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1.0 INTRODUCTION 

During the past four to five years, two 1,500-1b balances were developed to measure 
aerodynamic cross and cross-coupling derivatives at the Arnold Engineering 
Development Center (AEDC). One of these cross-coupling (C.C.) balances was built to 

be mounted on the 1,500-1b forced oscillation pitch/yaw cross flexure (C.F.) balance 
used primarily in the Propulsion Wind Tunnel (PWT) facility. The other was developed 
primarily to fit the 1,200-1b pitch/yaw C.F. balance in the yon K~'m~n Facility (VKF). The 
purpose of combining a C.C. balance with a C.F. balance was to enable the 
measurement of the forces and moments in the pitch, yaw, or roll planes that are 

produced by oscillating a model in a single plane with a C.F. balance. Both balance 
combinations have been tested in the laboratory, and, in addition, the PWT 

combination was used in a test in Tunnel 4T to make cross and cross-coupling 
measurements on the standard dynamics model (SDM) in December 1980. 

Following fabrication of the balances, each was laboratory tested to determine 
the accuracy with which a known applied moment vector could be measured. As was 

expected, the use of statically obtained balance gage sensitivities to reduce dynamic 
data resulted in a difference between the applied laboratory moment vector and the 
measured moment vector. The difference in the vectors was attributable to the 
balance deflections, which, under dynamic loading conditions, were caused by the 
model and balance inertias, as well as the externally applied loads. The purpose of 
this report is to present the equations of motion of the subject balances which would 
enable a more accurate measurement of such dynamic load vectors in the future. 
Although other problems with making such measurements do exist, such as nonlinear 
load interactions between different balance gages, it is not the intent of this report 
to cover any subject other than the dynamic modeling of the balance motion and, the 
development of the relevant equations of motion. 

A statically obtained balance sensitivity reflects the stress imposed on a balance 
gage element (or beam) caused by a known statically applied load. The stress produces 
a strain in the beam, and a strain gage mounted on the beam converts this strain into 
an electrical output. Under dynamic loading conditions no distinction can be made 
between the strain caused by an inertia load and that caused by an external or 
aerodynamic load unless the system is mathematically modeled and analytically 
solved for the external loads. To account analytically for the inertia loads, the 

sting/balance/model system must be accurately modeled to include all of the degrees 
of freedom experienced by the system. The equations of motion for this system can 
then be solved for the externally applied loads. Although it is possible to write the 
equations to include all degrees of freedom, it is difficult to instrument a balance to 
measure all these quantities. Some compromises must be made to keep the 
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instrumentation and data reduction requirements reasonable. Therefore, only the primary 
degrees of freedom can be measured and accounted for in the equations of motion, and 
these primary degrees of freedom may vary, depending on balance type. 

The equations of motion for the subject AEDC systems and the system models to 
which they apply are presented in this report. The methods of derivation of these 
equations are not new and are fairly general in applicability. However, the specific 
equations for a given system are unique to that system and other systems with similar 
primary degrees of freedom. Hanff (Ref. 1) did a similar equation development for the 
system at NRC in Canada, but his equations are not totally applicable to the AEDC 
systems because of the additional degrees of freedom added by the relatively flexible 
stings used at AEDC. Differences in equations of motion also arise because of the 
different types of balances used at AEDC. The equations of motion for the balance 
developed in PWT, a force-moment balance, are different from the equations of motion 
for the balance developed in VKF, a moment balance, because the force gage is 
designed for primary compliance in translation, whereas the moment gage is primarily 
rotational. In the application of any equation, the system model to which the 
equations apply must compare with the system to which the equations are to be used, 
or errors will result. 

The roll equations are somewhat different from the pitch/yaw equations because all 
degrees of freedom rotate about the same axis. However, the same roll model and resulting 
equation apply to both of the subject systems. To illustrate the magnitude of correction 
resulting from the dynamic modeling of a multi-degree-of-freedom (DOF) roll balance, 
some cross-coupling roll data taken on an earlier test were reduced using the dynamic 
equation of motion in ro11. These data are presented in this report, along with the same data 
reduced using the static roll sensitivity. 

2.0 BALANCE DEFLECTION MODES AND DYNAMIC MODEL DEVELOPMENT 

In principle, each cross-coupling (C.C.) balance is similar to a five-component static 
force balance. Each balance is designed and gaged to measure a force or a moment, i.e., a 
shear or bending strain, at each of two balance stations in the pitch plane and in the yaw 
plane. In addition, each balance has a roll element gaged to measure strain caused by roll, 
which brings the total loads measured to five. The roll element station is physically located 
between the fore and aft pitch/yaw elements on both of the subject balances. To keep the 
balances as rigid as possible, they lack axial force gages: The main difference from a 
standard static balance, however, is a result of the requirement that a cross flexure (C.F.) 
balance be mounted internal to the C.C. balance. To meet this requirement the C.C. 
balances are built in the shape of a can to fit over the C.F. balance. The force-moment and 
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moment balances are iUustrated in Figs. I and 2a, respectively. The hollow center, illustrated 
by the cross-sectional view of each balance, is the cavity into which a C.F. balance is fit. The 
internal mounting of the C.F. balance within the C.C. moment balance is illustrated in the 
cutaway view of Fig. 2b. 

In providing a measurement of the moment or force at a particular station, the balances 
are, in essence, providing an electrical output which is proportional to the balance deflection 
at that station. With the proper handling these moment and force measurements can be 
converted into deflections of these flexible balance stations, as will be discussed later in Sec. 
3.0. The forward gaged station of the force-moment balance is designed and gaged (with 
strain gages) to provide an electrical output signal proportional to pitching moment and side 
force; i.e., it has a pitching moment element and a side force element. The pitching'moment 
gages sense the bending strain to which they are subjected, and the side force gages sense the 
shear strain to which they are ~ubjected. These two sets of gages are approximately centered 
about the same forward axial station of the balance, as are the two sets of gages at the aft 
station. Unlike the forward station, the aft gaged station is designed and gaged to provide 

electrical outputs proportional to yawing moment and normal force. The roll section, 
located between the fore ahd aft gaged stations, is gaged to sense shear strain produced by a 
rolling moment. The moment balance is different in that both the forward and aft pitch/yaw 
gaged stations are gaged to sense bending moment in both the pitch and yaw planes. 

It is assumed that all parts of the balances are perfectly rigid except for the gaged 
stations. In reality each gaged station can undergo deflections other than those for which it is 
gaged. Although the forward station of the moment balance is gaged to sense yaw and pitch 
bending moment (rotational degrees of freedom), it can still undergo deflections caused by 
yaw and pitch shear loads (translational degrees of freedom) even though these deflections 
do not provide an electrical output. These extraneous degrees of freedom are limited to 
small deflections by making the gaged beams as short as possible, thus limiting deflection 

attributable to " S "  bending. In like manner the forward station of  the force-moment 
balance is given maximum compliance to side shear load and pitch bending load by 
designing the balance cross section to have a high second moment of area about the z axis 
and a relatively low second moment of area about the y axis. The aft station is similarly 
designed. 

2.1 PITCH/YAW MODELS t 

If the deflections monitored by the strain gages are considered to be the primary 
deflection modes of the balance, then the dynamic model of  the moment balance pitch and 
yaw planes is different from the dynamic models of the force-moment balance. The moment 
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balance has two rotational degrees of freedom each in the pitch and yaw planes, whereas the 
force-moment balance has one translational and one rotational degree of  freedom in the 
pitch plane and the yaw plane. The roll station of each balance must also be considered to be 
a flexible member. It is assumed to add an additional rotational degree of freedom to each 
balance model. The resulting three-degree-of-freedom (3-DOF) models of the force-moment 
and moment balances in the pitch and yaw planes are illustrated in Figs. 3 and 4; 
respectively. One model applies to either the pitch or yaw plane for the moment balance, 
since all deflections are rotational. Two models are required for the force-moment balance, 

one in pitch and one in yaw. The translational degree of freedom is located at the front of 
the balance in the yaw plane and at the rear in the pitch plane. 

Two-degree-of-freedom (2-DOF) models for the same systems are shown in Figs. 5 and 
6. The 3-DOF models of  the balance illustrated in Figs. 3 and 4 depict the motion of the 
balance more exactly than the 2-DOF models illustrated in Figs. 5 and 6, in which the roll 
gage elements have been omitted. The omission of the roll gage element implies that they are 
rigid in pitch and yaw, which is not exactly correct. However, the roll gage elements are 
designed to be much more rigid in pitch and yaw than the fore and aft pitch and yaw gages, 
and little error is introduced by their omission. In addition, the roll elements are not 

provided with strain gages to measure pitch or yaw deflection and their inclusion in the 
models and equations of motion would be of little use without a means to obtain the 
deflection data. Therefore, the simpler 2-DOF systems are more applicable to the balances 
as they now exist. 

Figures 3 through 6 illustrate two types of motion that are possible in each plane: out-of- 
plane motion and in-plane motion. The out-of-plane motion is considered to be that motion 
experienced by a balance in the plane perpendicular to the oscillation plane of the C.F. 
balance. For example, if a balance is being oscillated in pitch, the out-of-plane motion 
would be the motion experienced by the balance in the yaw plane. Under ideal conditions 

this motion is produced by external forces only and not by the forced oscillation of the C.F. 
balance. In reality some inertial coupling exists between the two planes, caused by nonzero 
cross products of inertia causing an inertial moment as well. These cross product inertial 
loads represent a tare which must be subtracted from out-of-plane balance output to arrive 

at a measurement of the externally applied loads. Tare levels such as these are typically 
measured under vacuum in a laboratory where no externally applied loads, e.g., 
aerodynamic loads, are present. 

The in-plane motion is the motion experienced by the balance in the plane of oscillation. 
In this plane the balance experiences the model and balance inertial loads imposed by the 

forced oscillation of the C.F. balances, as well as externally applied loads. These inertial 

8 
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loads plus some cross product inertial loads represent a tare level on the in-plane balance 
output. Again, this tare level output can be obtained under vacuum conditions. When 
speaking in terms of aerodynamic loads, direct derivatives are sensed by the in-plane gages, 
and cross or cross-coupling derivatives are sensed by the out-of-plane gages. 

To verify that the correct deflection modes of the force-moment balance were assumed, 
the balance deflections were measured under load using an holographic interferometry 
technique. By this technique, the deflection of the balance along its entire length was 

determined from a photographic record of the balance with superimposed interference 
fringes. Each successive fringe on the balance surface represents the deflection of the 
balance through one wavelength of the light used for illumination, in this case a helium-neon 
laser beam with a wavelength of 0.6328 /an. Details of the holographic interferometry 

technique are presented in Appendix A. Some results of the deflection measurements are 
shown in Fig. 7, where the deflections of the force-moment balance in the yaw plane are 
graphically illustrated. The plots clearly show that the primary deflections of the balance at 
the flexible stations are those deflections for which it is gaged. For example, in the yaw plane 
the force-moment balance has a force gage at the forward flexible station and a moment 
gage at the aft flexible station. The deflection curve (Fig. 7) illustrates a large translational 
deflection at the forward station and a large rotational deflection at the aft station, as would 
be expected. Accompanying the large translational deflection at the forward station is a 
small rotational deflection. This is an example of an extraneous deflection mentioned earlier 
which cannot be avoided in any real physical system. The deflection curves also illustrate the 
deflections of the middle flexible stations, the roll gage elements, which are currently not 
gaged to measure these deflections. However, they are relatively small compared to the 
primary deflections. To measure the balance deflections (and, consequently, the model 
motion) more correctly, the balance would have to-be gaged for all of the deflections 
illustrated by the deflective curve. However, as with most experimental measurements, 
tradeoffs between cost and ease of instrumentation must be weighed against accuracy. The 
dynamic data acquisition system used at AEDC does not currently have the capacity to 
handle the number of gages required to instrument the balances to measure the deflections in 

all degrees of freedom. It is unlikely that the accuracy gained would justify the additional 
cost. 

2.2 ROLL MODEL 

The rolling motion model of the balances is somewhat different from the pitch or yaw 
models illustrated in Figs. 3 through 6 since all degrees of freedom rotate about the same 
axis. For roll motion each balance is assumed to have a roll degree of freedom at each gaged 
station. In addition, laboratory tests of both of the counterpart C.F. balances have shown 

9 
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that the C.F. balances have more flexibility in roll than the C.C. balances. Therefore, the 
motion of  the C.F. balance in roll must be accounted for as well as the motion of the C.C. 
balance. The dynamic model of  the system in roll is illustrated in Fig. 8. This model applies 
to both the force-moment and the moment balance systems. 

3.0 BALANCE EQUATIONS OF MOTION 

The equations of  motion for the force-moment and moment balances as depicted by the 
models shown in Figs. 3, 4, 5, and 6 are given in Tables 1 and 2. The equation of motion in 
roll for the dynamic model shown in Fig. 8 is given in Table 3. The Lagrange method, as 

described in Ref. 2, was used for all derivations. Details of the derivations are presented in 
Appendix B. 

Note_ that the balance rotational and translation deflection measurements O1, 02, 03, ZI, 
and Z 3 are input into equations and not moments and forces as would be done for a static 
balance. This imposes the requirement that a spring constant (k) in terms of deflection/load 

of  each gaged station must be known as well as the standard sensitivity (s) in terms of 
voltage/load. These two constants, used in conjunction with the voltage signal (E) from the 
gage, provide the proper input to the equations as follows. 

(E)(k/s)  = e (or Z) (l) 

It must also be noted that the balance gage element deflections, O'and Z, are amplitudes 
of sinusoidal gage oscillations, since the C.C. balance is being forced to oscillate sinusoidally 
by the C.F. balance. A linear dependence between the balance oscillation and the forces 
produced from the oscillation is assumed. Therefore, the gage deflections (amplitudes) are 
vector quantities, i.e., they have phase, which is measured relative to the constant amplitude 
forcing function of the C.F. balance, as well as magnitude, and must be input as such into 
the equations. 

The constants in the equations include some lengths and masses which are not considered 

for a static measurement. These masses must be calculated from the known balance 
dimensions and the material (usually steel) density. They represent the partial balance 
masses between consecutive gages (represented by springs in Figs. 3 through 6).The locations 

of the centers of  gravity (e.g.) of these masses (gel, fo ,  and fc3) must also be calculated from 
the known balance dimensions. Although these calculations could be subject to slight error 
because of the neglect of  the strain gage mass, connecting wire mass, and possible error in 
the material density assumed, a close estimate of the masses used in the equations of motion 

10 
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would provide a more correct result than would complete neglect of the masses. 

The equations of motion given in Tables 1, 2, and 3 also include some tare damping 
constants, as well as some aerodynamic damping and restoring moment constants. The tare 

damping constants, which are discussed in Appendix C represent the mechanical damping 

inherent in the gage elements themselves. The aerodynamic "constants" such as k0aer ° and 
c0aer ° represent the restoring moment (aerodynamic spring constant) and damping moment 
resulting from aerodynamic effects. They are the same parameters that would be obtained 
from a standard forced oscillation pitch, yaw, or roll test, the direct damping derivatives. If 
a balance could be perfectly rigid and still measure the required cross or cross-coupling 
moments, the inclusion of these aerodynamic terms would not be necessary. However, when 
a cross or cross-coupling moment is applied to a flexible balance, a motion results, and the 
damping and restoring moment of the air surrounding the balance (model) is a result of the 
balance motion and is not part of the cross or cross-coupling moment being measured. The 

aerodynamic restoi'ing moment and damping moment are represented schematically by a 
spring and a damper attached to ground (inertial reference frame), as illustrated in Figs. 3 

through 6 and Fig. 8. 

The magnitude of the aerodynamic restoring moment is very small relative to other 
spring constants in the equations, and generally can be neglected. However, the 
aerodynamic damping moment can possibly be of the same magnitude or greater in 
magnitude than the cross or cross-coupling damping moment itself, and, if possible, it 
should be included in the data reduction. If it were not included in the reduction, the phase 
of the data signal from the balance could be misconstrued as being the phase of the cross or 
cross-coupling moment when, in reality, it is a phase shift caused by aerodynamic damping. 
In most cases if a test is being run to determine cross or cross-coupling derivatives, some 
knowledge of the direct damping derivatives will be available. If these direct derivatives are 
not known, then an analysis of the error that could result from their exclusion should be 

conducted before proceeding with the test. An example of the error that can result from 

neglecting C0aer ° is given in Appendix D. 

The roll equation of motion is somewhat simpler than the pitch or yaw equations because 
all of the balance masses and the model mass rotate about the same axis, the balance x axis. 
The system is merely a series of masses connected by a series of springs. If the moments of 
inertia of the intermediate balance masses are neglected, the problem reduces to a single 
degree-of-freedom system with a single natural frequency determined by the model mass and 
the total spring constant. Naturally, the total spring constant is the resultant of the series of 
springs represented by the three balance gages plus the C.F. balance spring. Each of these 
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four entities has its own spring constant in roll as well as pitch and yaw. However, only one 

of the gages is actually gaged to measure roll deflection, the roll gage of the C.C. balance. 
Through suitable substitutions, the complete equation of roll motion [Eq. (1)] given in Table 

3 can be reduced to a much simpler equation [Eq. (2)] which involves the ratio o f  the 
oscillation frequency to the natural frequency of the total system in roll and the standard 
moment measurement from the balance. 

I 

4.0 EQUATIONS OF MOTION WITH STING BENDING MOTION INCLUDED 

The equations discussed in the previous section are limited in application to cases where 
the balance mount is either fixed in an inertial reference frame or the balance mount is 

rotating about a center of rotation which is fixed in an inertial frame. In reality the sting to 
which the balances are mounted is not a good basis for an inertial reference frame, for the 
sting itself is oscillating. If it is assumed that the hub to which the sting is mounted is fairly 

rigid, then accounting for the sting motion between the hub and the balance will account for 
the total motion of the balance sections relative to an inertial frame. 

As was done by Burt in Ref. 3, the sting motion was considered to be a combination of a 
pure rotation about the balance center of  rotation (0s) and a pure translation of the center of 
rotation (Zs). Including these motions in the previous models (Figs. 3 through 6) results in the 

models shown in Figs. 9 and 10. The equations of motion describing these systems are given 
in Tables 4 and 5. These equations are similar to the previous equations of Tables 1 and 2 

except they include sting translation (zs) and rotation (0s) terms.The sting must be 
instrumented and calibrated in a manner similar to the balance gages to provide outputs 

proportional to the sting deflections. However, all stings that are currently used for dynamic 

forced oscillation testing are already instrumented and calibrated for sting deflections, so 
this particular requirement is not new or unusual to AEDC testing. 

The equations without sting bending, Tables 1 and 2, are actually a special case of Tables 

4 and 5. If the sting degrees of  freedom, zs, and 0s, are set to zero, the equations of Tables 1 
and 2 result. It must be remembered that the force or moment vector on the right-hand side 
of any of  these equations represents the total load measured. When wind tunnel data are 
reduced with these equations, the total load is the aerodynamic load plus any mechanical 

damping or inertial tares experienced by the balance. These tares must be measured in the 

laboratory and subtracted from the total load to yield the aerodynamic load, as discussed in 
Sec. 2.1. 
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5.0 DATA REDUCTION 

As discussed earlier in Sec. 3.0, knowing that the C.F. balance motion (0o) is sinusoidal 
and assuming a linear dependence between the balance motion and the resulting 
aerodynamic forces on the C.C. balance (model), the resulting balance outputs are 
sinusoidal, i.e., they are vector quantities with phase as well as magnitude. The time- 
dependent gage outputs, which reflect gage deflections, can be represented as follows: 

Oj = Oje i''' Zj = Zje i'°t 

The amplitudes of the motions (Oj and Zj) have both phase and magnitude and can be 
represented as 

"Oj = Ojei'rj ~jj - Zjeivj 

These complex or vector amplitudes are the experimentally determined quantities which 
must be input into the equations of motion given in Tables 1 through 5. With the current 
AEDC data acquisition and processing technique used for acquisition of dynamic forced 
oscillation data, these quantities can be routinely acquired for use in the equations of 
motion. 

S.l PITCH/YAW DATA REDUCTION 

When all of the mass constants, moment of inertia constants, length constants, spring 
constants, and damping constants are evaluated and input into one of the equations of 
motion, and after the oscillation frequency (~0) for a particular test case is measured and 
input, the equations reduce to the following form. 

(and/or  RjZj) (and/or i PjZj) (or F) 
(2) 

In this equation Rj and Pj are mass or inertia constants and M (or F) is the externally applied 
load vector measured by the balance. Combining terms and writing the equation in complex 
form, the above equation reduces to the following: 

where 

a + bi = M ( o r F - - )  (3) 

(or F=-) = Meiv (or Fei,) 

13 
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The magnitude and phase o f  the measured moment  or force vector is defined in the usual 
manner ,  i.e., 

M = ~ ]a  2 + b 2 

3' = tan "t b / a  

where a is the real and b the imaginary component  o f  the complex number.  These quantities 

are the magnitude and phase o f  the aerodynamic or other externally applied load which is 

applied to the p~irticular gage in question. If the data are to be presented in an "in-phase- 

with-posit ion" and an "out-of-phase-with-posi t ion" format,  then these quantities are 
identically a and b, respectively. 

In most cases the moments  or forces measured at a particular gage location are not the 

result that is sought. Instead the balance measurements must be converted into a force and a 

moment  about a selected reference point. For a moment  balance and a force-moment  

balance the equations which convert the data into a force and moment  about  a selected 
reference point are as follows: 

M o m e n t  Ba lance  

where 

~" = MI-M3 (al-a3) + i(bl-b3) 
= (a + ib)forc, (4) 

m 

M I = 

M 3 = 

e = 

t t 

moment  measured at forward balance station 

al + i bl 

moment  measured at rear balance station 

a 3 + i b 3 

absolute distance between balance gage stations 

and 

m 

F = calculated force vector. 

where 

MREF " =  Mt + V(Xl-XREF) = (a + ib)MOMENT 
AT XRE F (5) 
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MRE F ---- moment  referenced to reference point XRE F 

Xl-XREF = distance from the forward balance gage center 

to the model reference point using the sign 

conventions illustrated in Figs. 1 and 2. 

Force-Moment Balance (Yaw Plane) 

AEDC-TR-81-34 

where 

and 

m 

F1 = al + ibl M3 = a3 + ib3 

MREF = M3 4" ~l(Xmoment-XREF) 
gage 

= measured force vector, a I + i b I 

M 3 -- measured moment  vector, a 3 + i b 3 

MRE F = moment  about reference point XRE F 

(6) 

the force ( ~  and moment  (M--) are swapped 

corresponding gages in the pitch plane. 

Xmomem-XRE F = distance from moment  gage center to 
gage reference point XR~ F measured positive 

toward the front. 

The pitch plane equations are similar to those presented earlier except that subscripts o f  

because of  the position reversal of  the 

Knowledge of  the magnitude and phase of  both the force vector and the moment  vector 

enables the calculation of  the required derivatives. However, it must be kept in mind that the 

phases of  the force and moment must be known relative to the total model motion,  and total 

model motion is represented by the total rotational vector and the total translational vector, 

which will be called O T and 7_, r for pitch plane motion. If the phase angles of  the pitch plane 

force and moment  vectors relative t o  O T are given by '7T F and 7-rM, then the required pitch 
plane damping and restoring moment  derivatives are calculated as follows: 

M cos M sin 
M O -- 7TM Mo = 7TM 

O T ¢0OT 

F cos F sin 
Fo = ~TF F~ -- ~TF 

~r coe~r 
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Similar calculations are required for the yaw plane. 

5.2 ROLL DATA REDUCTION 

The roll data reduction equation reduces to a simple form [Eq. (2) of Table 3] which uses 

the standard rolling moment measurement from the balance rather than the angular 

deflection measurements as inputs to the equation. The equation includes several constants 

which must be determined experimentally, i.e., ~ntotal , c2/k2,  and k totai" The remaining con- 
stant C~aer ° is the aerodynamic roll damping constant which either must be known from the 
results of  a previous direct derivative wind tunnel investigation, must be estimated in some 

manner, or must be assumed zero, The effect that COaer ° has on the data reduction cannot be 
stated in one general rule. Its relative importance depends on the phase angle of the data 

signal which is configuration and attitude dependent. The effect of assuming this constant to 
be zero is illustrated in Appendix D for a specific case. 

The t e r m  ktota I is the total spring constant of the two-balance system in roll, assuming 
that all of the flexible'balance sections have a degree of freedom in roll, including the C.F. 

balance, and that these separate sections are connected in series-to form a total spring con- 
stant. The roll inertia of  the balance parts connecting these separate sections (springs) is 

ignored, and the system is assumed to exhibit one natural frequency characteristic of the 
total spring constant. This assumption has been shown to be accurate from spectral analysis 
results of both C.C. balances. Each balance exhibits one predominant natural frequency 

rather than one frequency .for each mode of vibration. With the wind tunnel model 

mounted, this natural frequency is the ¢~ntotal mentioned earlier, and this constant may 
change for each model configuration for which data are taken and reduced. On the other 
hand the ktota I constant will likely never change for a particular balance throughout a test 

program unless the balance is somehow changed. The constant c2/k 2 is the ratio of the 
mechanical damping of the roll section of the balance to the spring constant of that section. 
The determination of this constant is discussed in Appendix C. 

As with the previous pitch and yaw data, the moment signal (k2~"2) from the balance is a 
vector quantity and has magnitude and phase relative to the model position vector. Since the 
quantity in brackets [Eq. (2), Table 3] is also a vector or complex quantity, the equation 
takes the following form after all of  the constants and the data vector are inpu t . .  

[M~, eiv'][l /~ eiav] = Mxei~ (7) 

The equation in this form illustrates the "demagnification" and phase shifting effected by 
the bracketed term of Eq. (2), Table 3. The magnitude of  the rolling moment signal (M:) is 
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decreased by the muitiplicative constant 1//~, and the phase is shifted by the phase of the 

bracketed vector, AT. Close examination of  the bracketed term in Eq. (2), Table 3 reveals 

that the frequency ratio (W/0Jntotal) is the primary influence on the multiplicative constant I//~ 
and that the damping constants are the primary influence on phase shift. These effects are 
illustrated in Appendix D. 

6.0 CORRECTION OF EXISTING CROSS-COUPLING ROLL DATA 

To confirm that the roll data reduction equation was indeed serving to produce a correct 
moment reading from the flexible C.C. balance, some previously obtained laboratory data 
were reduced using Eq. (2) of Table 3. The rolling moment laboratory data were induced by 
oscillating a dynamically unbalanced (Ixy ~ 0) calibration body in pitch. The applied rolling 
moment was calculated from the known Ixy and the osciUation frequency and amplitude. 
Data were taken for several values of the oscillation to total natural frequency ratio by 

changing the moment of inertia (Ix) of the calibration body. The rolling moment balance 
output was reduced in two ways: by simply applying the statically obtained roll gage 
sensitivity to the roll gage signal, and by using the roll equation as given in Table 3. The 

constant c2/k 2 was too small to be resolved and was assumed to be zero. A plot of the results 
is shown in Fig. 11 where the measured to applied load ratio is plotted as the ordinate and 
the frequency ratio is plotted as the abscissa. The roll equation of motion of Table 3 clearly 
corrects the data for the majority of the dynamic effects. 

To illustrate the application of the roll data reduction equation to some wind tunnel 
data, and to illustrate the magnitude of corrections to such data, the results from two past 
tests were corrected using a form of Eq. (2) of Table 3. The first source of such data was the 
wind tunnel tests conducted on a model of a current fighter configuration in June 1978. The 

uncorrected data, which were originally reduced using static calibration sensitivities, are 
illustrated in Ref. 4. These data were obtained with a 4,000-1b dual-balance system similar to 

the 1,500-1b force-moment system discussed herein. Tests of a standard dynamics model 
(SDM) run in December 1980 were the second source of data. These data were obtained 
using the 1,500-1b force-moment C.C. balance illustrated in Fig. 1. 

4 

Using the system natural frequency and the system damping factor obtained by 
Buchanan in Ref. 4, the roll data reduction equation was first applied to the cross-coupling 

roll data assuming %aero to be zero. The corrected and uncorrected data are illustrated in.  
Fig. 12. The correction equation used was 

Mx = 0.868 e i0.033 M x (8) 
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The largest absolute correction was obviously made to the data of the highest magnitude. In 

this case the magnification effect resulting from balance dynamics was the overwhelming 
correction influence. On the other hand, the low magnitude data actually had a larger 

percentage correction in many cases attributable to the gage mechanical damping phase shift 

effects. In one case where Ceq + Ce, ~ was near zero, the correction even caused a sign reversal 
from the original data. However, these magnitudes are too low to be of  practical interest to a 
user of the data. 

Since the direct roll damping data were also available from this test program, the same 
data were reduced, including the effects of the aerodynamic damping (ceaero) on the data. 
The correction equation including the effects of ctaer ° is 

m m 

Mx = 0.869 e i°.°53 M'x (9) 

These data have not been plotted since the added aerodynamic damping effect produced no 
noticeable change in the corrected data. 

The effects of the correction of the SDM data are illustrated in Fig. 13. Because of  the 
low moment of inertia (Ix) of the SDM model, the ratio of the oscillation to total natural 
frequency was relatively low and, consequently, the correction was fairly small. The 
equation used to correct these data was 

Mx = 0.971 e i0.001 M"'~ (10) 

This correction equation includes the effect of aerodynamic damping, which was known 
from direct derivative tests of the same model. 

The c()rrection equations for the fighter data and the SDM data indicate minimum 
corrections of 13 and 3 percent, respectively. In these cases no extremely large corrections 

occurred because the phase angle of the balance signal was not near a multiple of 90 deg. 
Had this occurred in conjunction with the phase correction required for the fighter data, 
large corrections in the data could have occurred. In fact, this did occur on several of the 
data points, but the magnitude of the coefficients in these cases was small enough to render 
the moments themselves, let alone the correction, unimportant. Since the phase of  the cross 
or cross-coupling rolling moment is configuration and attitude sensitive, it is almost 

impossible to predict from one model to another whether the corrections will be significant. 
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7.0 CONCLUSIONS 

The equations of motion for the two C.C. balances used at AEDC have been derived and 
presented for use in future cross and cross-coupling data reduction procedures. These 
equations enable statically obtained balance gage sensitivities to be used in the reduction of 
dynamic loads. Although all balance motions must be measured and accounted for in order 
to define an external load exactly, only the primary motions have been included in these 
derivations. These include the motions for which the balances are gaged, the lateral rotation 
of the balance roll gage element, and two degrees of freedom of sting motion. The primary 
deflections of the balance, i.e., the motions for which the balance is gaged, have been 
measured under load, and have been shown to be the most significant deflections of the 
balance. On the other hand, the lateral rotational motion of the roll gage, which was also 
included in the equations of motion, proved to be insignificant. ~, 

Selected cross-coupling roll data previously obtained in the laboratory, as well as some 
selected wind tunnel roll data, were corrected using the dynamic equations. The effects of 
corrections afforded by the dynamic equation, the effects of ignoring aerodynamic damping 
in the measurement of cross and cross-coupling derivatives, and the results of the balance 
deflection measurements are summarized in the following concluding remarks: 

1. The primary deflections undergone by the two subject balances are indeed the 

deflections for which the balances are gaged. 

a. The lateral rotational deflections of the roll gage elements are small if at all 
measurable and can be excluded from the equations of motion. 

b. The rotational (bending) deflection of a gage element primarily designed for 
translational (shear) deflection is measureable. The definition of the externally 
applied dynamic loads would be more exact by including measurements of these 

deflections, although the effect on accuracy would be small. 

2. The use of the dynamic equations of motion in correcting cross-coupling roll data 
has shoran varied effects on dynamic moment calculation. 

a. The roll equation, for which the correction magnitude varies inversely with the 
natural frequency of the dual-balance system in roll (¢~ntotal), corrected the 
laboratory roll data to within two percent of the applied cross-coupling load. 
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b. Application of the dynamic roll equation to data from a modern fighter aircraft 
resulted in significant correction (13 percent) to the higher magnitude data. 

C. Application of the dynamic roll equation to data from the Standard Dynamics 
Model taken with the subject force-moment balance system resulted in relatively 
small corrections (< 3 percent). 

d. It is unlikely that a general rule regarding the significance of the correction to 
dynamic data from varied models will be established, since the magnitude of the 
correction depends on the phase of the cross-coupling moment signal, which is 
configuration and attitude dependent. 

. Neglecting aerodynamic damping in the calculation of cross or cross-coupling 
moments could result in significant percentage errors in the damping moment when 
measured phase angles are near 0 or 180 deg. 

The details of the work which led to these conclusions are presented in Appendixes A 
through D. The balance deflection mode determinations and the equation of motion 
derivations which result from mathematically modeling the confirmed deflection modes are 
presented in Appendixes A and B, respectively. Methods for determining the equation 

• constants are discussed in Appendix C, and the possible effects of neglecting the 
aerodynamic damping constants when they are not available are discussed in Appendix D. 

In the process of providing a systematic development of the equations of motion, several 
forms of the equations have been presented in Tables 1 through 5. The equations which 
provide the most accurate reduction of the aerodynamic moments, and which require only 
those measurements for which the subject AEDC balances are currently instrumented, are 
the roll equation of Table 3 and the pitch/yaw equations including sting motion of Tables 4 
and 5. Inclusion of additional degrees of freedom in the equations of motion is ineffectual 
unless the measurement of additional balance or support deflections is made possible 
through additional balance instrumentation. 
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Figure 2. 
a. Cross-coupling moment balance details 

The 1,500-1b moment balance used for measurement of cross 
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Figure 7, Yaw plane deflection modes of the force-moment balance. 
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Figure 8. Dynamic model in roll. 
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Note: k~aero and ~aero must be included in the out-of-plane (e 0 - O) model not illustrated), 
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Note: (1) Model is illustrated with pitch plane nomenclature. 
Model also applies to the ~ ,  plane with the deflection and load symbols cha nged. 

(2) kSaer ° and Ceaer ° must be included in the out-of-plane (80 = O) ' 

model (not illustrated), as shown in Fig. 4a. 
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Figure 10 .  Dynamic  model  of the three-degree-of - f reedom m o m e n t  balance system 
including t w o  degrees of f reedom of the support ing sting. 
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Figure 1 1. Laboratory roll data corrected using the 
multi-degree-of-freedom approach. 
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Table 1. Pitch/Yaw Equations of Motion for the Force-Moment Balance 
a. Pitch Plane 

Out-Of-Plane 2-DOF Motion (Assumes Roll Section Rigid in Pitch and Yaw) 

-co 2 ~t[I] + 13 + mlf~t + m3t~3] + o-'2Z3[m3fc3] + klOl + keaero(Ol) + ctcoiej 

"I- C0aer ° wie I = ~I I 

c°2Ol[m3ec3]" c°2Z3[m3] + k3Z3 + c3wiZ3 = Fz 

Out-Of-Plane 3-DOF Motion (Assumes Roll Section Compliant in Pitch and Yaw) 

-w2~l[II + I2 + I3 + mif~! + m2f~2 + m3f~3]- c02~2[I2 + I3 + m2fc2(fc2 - f2) 

+ m3fc3(ec3- e2)] + co2Z3[m3~3] + klO, + koaero(Ol + e2) + cliw~l + COaero ic° 

(0, + 02) = ~ 

co2~,[m3fc3] + w2~2[m3(fC3" f2)]" w2Z3[m3] + k37-3 + c3wi7--3 = Fz 

In-Plane 2-DOF Motion (Assumes Roll Section Rigid in Pitch and Yaw) 

-w2ei[Ii + 13 + m]~] + m3f~] + c02Z3[m3~3] + kl~ I + ¢lcai(~ - w2O0 

[II + I3 + m l f c l ( ~ l "  tO) + m3~3(f¢3- to)] = ~ll 

co2Ol[m3fc3] - o~27-3[m3] + k3Z3 + c3ic°Z3 - W2eo[m3(fo- fc3)] = Fz 

In-Plane 3-DOF Motion (Assumes Roll Section Compliant in Pitch and Yaw) 

~2~ , [ i ,  + I2 + x3 + m,e~1 + m2e& + m3e~3] ~2~2[I2 + I3 + m2~2(ec2 ~ + m3tc3 

+ m3fc3(fc3" to)] + k le l  + ¢looi~ = M, 

W2~l[m3fc3] + w202[m3(ec3-f2)]-co2Z3[m3] - ¢o200[m3(eo - ec3)] + k3Z3 + c3coiZ3 = Fz 
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Table 1. Concluded 
b. Yaw Plane 

Out-Of-Plane 2-DOF Motion (Assumes Roll Section Rigid in Pitch and Yaw) 

"w2~/l[ml + m3] + w2~3[m3(fc3 " f3)] + kl~/l + ctwi~/1-- Fy 

.~2y,[(_ m3)(ec3- t3)]-~2~,[~3 + (m3)(ec3- e3) ~] + k , ~  + c,~i~, + k~.oro~ ~ 

+ C¢~o°~i~3 = M3 

Out-Of-Plane 3-DOF Motion (Assumes Roll Section Compliant in Pitch and Yaw) 

=o~2~/l[ml + m2 + m3] + w2~2[m2(fc2 - f2) + m3(fc3" f2)] + oj2~3 

[m3(tc3-e3)] + k f / l  + ClO~i~/i -- Fy 

- o~2Y1[( - m3)(~3 " f3)]" °~2~2[I3 + (m3)(fc3 " f2)(fc3 " ~ ) ] "  °"2~3[I3 + (m:~ 

(~3-e3) 2] + k3~3 + c3o~i~3 + k~,~ro[~2 + ~3] + c,~,oro~i[~2 + ~3] = ~3 

In-Plane 2-DOF Motion (Assumes Roll Section Rigid in Pitch and Yaw) 

-oJ2Yl[m I + m 3] + w2~3[m3(fc3 - e3)]-oJ2~o[mlf 0 + m3(f 0 - fc3)] '+ kl~/l 

+ c~ i~  = ~y 

" O 2 Y l [ (  - m3)(ec3 - e3)]- oJ2~3[I3 + (m3)(fc3 - f3)2] - o,'2~0[I3 " (m3)(fo - fc3) 

(fc3" f3)] + k3~3 + c3o~i~3 = M3 

In-Plane 3-DOF Motion (Assumes Roll Section Compliant in Pitch and Yaw) 

-o~2~/l[ml + m2 + m3] + oJ2~2[m2(fc2 - f2) + m3(fc3-f2)] + ofl~3[(fc3- fJ)(m3)] 

-~2~o[mlfo + m2(fo-~3)  + m3(fo-fc3)] + kl~/l - ¢1°~i~/1 = FY 

- o~2~/1[( - m3)(fc3- f3)]- °~2~2[I3 + (m3)(fc3 " f2)(f¢3 - f3)]-  °~2~3[I3 + (m3)(fc3 " f3) 2] 

- o02~0[I3 - (m3)(~o- fc3)(ec3 - ~)] + k3~3 + c3°Ji~3 = M3 
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Table 2. Pitch-Yaw Equations of Motion for the Moment Balance 

Out-Of-Plane Motion (2-DOF-Assumes Rigid Roll Section) 

-oJ2~l[I 1 + mlf~! + 13 + m3e23]- ~203[I 3 + m3~3(f~3- e3)] + kl01 + ioJc101 

+ ke~ro[~, + 03] + i~%°ro[0, + ~3] = ~1 

-°flOl[I3 + m3~3(~3" f3 ) ] -~O3[I3  + m3(fc3 '-~)2] -I- k3~ 3 Jr" io~c3~ 3 

+ k0a=o[0, + 03] + i~%=o[0~ + ~3] = ~3 

Out-Of-Plane Motion (3-DOF-Assumes Complaint Roll Section) 

-~2~[ I !  + 12 + 13 + m l ~  ~ + m2e~ 2 + m3f~3 ] - ¢~202 

[I2 + I3 + m2fc2(~2" f2) + m3~3(fc3- f2)]-o~203[I3 + m3fc3(~3- f3)] 

+ k , ~  + ion,0, + k~..o[0, + ~2+ 03] + i~%°~[0, + 0~ + ~ ]  = ~x 

- oj20![I3 + m3fc3(~3 - ~ ) ] -  0j202[I3 + m3(ec3 - f3)(fc3 - e2)] 

"°J203[I3 + m3(~3-f3)  2] + k303 + i°Jc303 + koaero[Ol+ O2 + O3] 

+ i~ceaero[O, + O2 + O3] = 1VI3 

In-Plane Motion (2-UOF-Assumes Rigid Roll Section) 

-~Oi[ I I  + mlf~] + I3 + m3e~3]- oflO3[I3 + m3fc3(~3-f3)] + klOl + ioJ¢101 

-°~200[I1 + I3 + mlfCl(fCl- fo) + m3~3(fc3- fo)] = ~41 

. o~201[i 3 + m3fc3(fc3- e3)]" o~203[i3 + m3(~3 ,  ~)2] + k303 + i0~c303, oj2O ° 

[I3 + m3(fc3 - f3)(fc3 - fo)] = M3 

In-Plane Motion (3-DOF-Assumes Compliant Roll Section) 

"0~201[I1 + I2 + ]3 + mle~l + m2e~2 + m3e~3]- ~202[I2 + I3 + m2ec2(~.c2- f2) 

+ m3~-c3(ec3- f2)]-oJ203[I3 + m3fc3(ec3- f3)] + kl01 + i¢~101- oj200 

[II + I2 + I3 + mleci(fci-  O + m2~--'2(~c2- fo) + m3ec3(ec3 - ~))] -- M1 

- °j201[I3 + m3~c3(~c3 - f3)]- oflO2[I3 + m3(~3 - e3)(fc3 - f2)- o~203[I3 

+ ms(re3" e3 )2]+ k303 + i°Jc303- °~200[I3 + m3(~3" f3)(fc3 - fo)] = M3 
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- oj213(~1 

k2~ 2 = 

Wntotal = 

C 2 = 

k 2 = 

C~aer o = 

ktota I = 

Table 3. Roll Equations of Motion 

+ ~2 + ~3 + ~f) + k2~z + i°~c2~z + i°"%aero(~l + ~2 + 
i 

~ + ,~f) = ~× 
(I) 

2 . C2 C~f~.cr o 

([I- (--~-=o) ] + ,~[---~_.~ + ~ ,])~ = ~× (2) 

Standard moment measurement obtained from the balance roll gage using a 

static gage sensitivity 

Natural frequency of the total model/balance system in roll 

Mechanical damping of roll gage / 

S Spring constant of  roll gage 

Aerodynamic damping in roll 

See Appendix C for these 
constant determination details 

Spring constant of total two-balance system in roll 
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Table 4, Equations of Motion for the Force-Moment Balance Including 
Two Degrees of the Supporting Sting 

a. Pitch Plane 

- ~ 2 ( A 2 0  | + B202  + C2Z 3 + D 2 0  s + E2Z  s + F 2 0 0 )  + k3Z 3 + c3wiZ3--  1~ Z 

- ~o2(A101 + BIO 2 + CIZ- 3 + D I e  s + EIT, s + FIO 0) + klO 1 + k0aero 

((~0 + Os + e l  + O2) + c lwiOI + C0aero~0i(~ 0 + Os + e l  + O2) = 1~1 

Constant Definitions 

3-Degree-Of-Freedom Balance (Fig. 3a) 

A 1 -- I 1 + 12 + 13 + m l ~  ! + m2f~2 

+ m3f~3 

BI = I2  + I3 + m 2 f c 2 ( f c 2  - f 2 )  

+ m3fc3(fC3 - f2) 

C I = _ m31c3 

FI = DI = II + I2 + I3 + mlec l ( fC l  - fo) 

+ m 2 f c 2 ( f c 2 -  0 

+ m3fc3(ec3 - fo) 

E l = _ mlfCl  - m2fc2 - m3fc3 

A 2 = _ m3fc3 

B2 = - m3(?c3 - f2) 

2-Degree.Of-Freedom Balance (Fig. 
$a) 

A I = I I + 13 + ml f~ l  

+ m 3 ~  3 

B 1 -- 0 

C 1 = 

F I -- D i = 

- m3fc3 

II + 13 + m l f c l ( f C l  - fo) 

+ m3fc3(fC3 - 0 

E 1 -- 

A 2 = 

B 2 = 

- m l ~  1 - m 3 ~  3 

- m 3 ~  3 

0 

Notes: 
m 

(1) For out-of-plane motion O o = 0 
(2) For in-plane motion k0aer ° and C0aer ° terms should 

they are the measured loads, i.e., the direct derivatives. 
be omitted since 

44 



AEDC-TR-81-34 

Table 4. Concluded 
b. Yaw Plane 

- o~2(Al'Y'l + BI'~" 2 + CI'~ 3 + DI'~" s + EI~" s + FI'~'0) + kl'Y ' + C l i ~  1 = "~'y 

- o~2(A2"Y'l + B2"~" 2 + C2"~ 3 + D2"~" s + E2"Y s + F2"~0) + k3"~" 3 + c3iw'~" 3 

+ k~aero(~'3 + ~'2 + ~'0 + "~'s) + C~aeroiO~(~'3 + "~'2 + ~ 0  + "~'s) ffi M3 
i 

Constant Definitions 

3-Degree-Of.Freedom Balance (Fig. 3b) 

E l = A 1 = m I + m 2 + m 3 

B] = - m2(fc2 - f2) - m3(fc3 - f2) 

CI = - m3(ec3 - f3) 

FI = DI = mlfo + m2(fo - fc2) + m3(fo - fc3) 

E2 = A2 = ( -  m3)(fc3 - f3) 

B 2 = 13 + ( m 3 ) ( f C 3 -  e2)(~ 3 - e3) 

C2 = 13 + ( m 3 ) ( ~  3 _ ?~2 

F2 = D2 = I3 - (m3)(fc3 - f3)(eo - fc3) 

2-Degree-Of-Freedom Balance (Fig. 

Sb) 

E I = A I -- m ! + m 3 

B 1 = 0  

C 1 = - m3(fC3 - e3) 

FI = = mlto + m 3 ( e o -  ec3) 

E2 -- A2 -- - m3(fC3 - f3) 

B 2 =  0 

C 2 = I 3 + (m3) (~3  - e3) 2 

F2 = D2 = I3 - (m3)(fc3 - f3) 

(eo- ec3) 

Notes: (1) For out-of-plane motion O 0 = 0 
(2) For in-plane motion kCaer o and C~aer ° terms should be omitted since they are the 

measured loads, i.e., the direct derivatives. 
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Table 5. Equations of Motion for the Moment Balance Including 
Two Degrees of Freedom of the Supporting Sting 

-¢a2 (AIO!  + BIO2 + C103 + DIO,  + El~rs + FIO0) + k lOl  + k0aero(O3 + O2 + Ol  

+ Os + O0) + ClWiOl + C0aeroWi(O3 + O2 + Ol "1- Os -I- O0) = ~II 

-- ~a2(A2Ol+ B202 + C203 + D2Os + E2Zs + F20"0) + k303 + kaaero(O3 + O2 + O! 

+ Os + O0) + c2°JO2i + C0aero~ai(O3 + O2 + O1 + Os + O0) = M3 

Constant Definitions 

3-Degree-Of-Freedom Balance (Fig. 4) 2-Degree-Of-Freedom Balance (Fig. 6) 

A 1 = I I + 12 + 13 + m l ~  1 + m2f~* 2 A1 = I I + 13 + mlf~l  + m3f~3 

+ m 3 ~  3 

BI = I2 + I3 + m2~2(fc2  - f2) B ! = 0 

+ m3fc3(ec3 - f2) 

A2 = C1 = I3 + m3ec3(ec3 - f3) A2 = CI = I3 + m3~3(ec3 - 13) 

D 1 = F 1 = I 1 + 12 + 13 + m l ~  1 DI = F 1 = I 1 + 13 + mlecl  

+ m 3 ~ 3 ( ~ 3  - fo) + m3~3(fc3 - fo) 

E I = _ ecim I - fc2m2 - fc3m3 E l -- _ fc iml  - fc3m3 

B2 = I3 + m3(lc3 - f2)(fc3 - f3) B 2 = 0 

C 2 = 13 + m 3 ( ec 3 - 13) 2 C 2 = 13 + m3(fc3 - 4 )  2 

D2 = F 2 - -  I3 + m3(fC3 - O ( f c 3  - f3) D2 -- F2 = I3 + m3(fG3 - 0 

(ec3 - 4 )  

E2 = - m3(ec3 - f3) E2 = - m3(ec3 - f3) 

Notes: (1) For out-of-plane motion O o = 0. 
(2) For in-plane motion k0aer ° and ceacr ° terms should be omitted since they are the 

measured loads, i.e., the direct derivatives. 
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APPENDIX A 
BALANCE DEFLECTION MODE DETERMINATIONS 

To interpret data obtained from a dynamic balance system correctly, an accurate model 
of the system must be assumed from which the equations of motion are derived. Naturally, 
the most accurate model would include both a translational and a rotational degree of 

freedom at each flexible balance station and in each plane, i.e., six degrees of freedom must 
be assumed and measured at each flexible station. However, the physical size of strain gages 
relative to the space available for gage placement on a small balance renders this approach 
all but impossible. Even if the instrumentation were possible, the additional accuracy gained 

from measuring all of these deflections would not be cost efficient. The most practical 
approach is to determine the primary deflection modes of a balance at each flexible station, 
instrument the balance to measure these deflections and corresponding loads, and write the 
system equations in terms of these primary deflections only. 

If a balance is designed to measure a moment at a particular station, its primary 

compliance is in rotation at that station since the gage must sense strain attributable to 
bending to provide an electrical output proportional to moment. It is kept as rigid as 

possible in all other degrees of freedom to limit the extraneous motions which are not meas- 
ured. In a similar manner, if a balance is designed to measure a force at a particular station, 
its primary compliance is translational at that station. To confirm these primary modes of 
deflection of the force-moment C.C. balance, holographic interferometry was used to 

provide a graphic illustration of the balance deflections under load over the entire length of 
the balance. The technique involves the superpositioning of a deflected balance image onto 
the holographically reconstructed image of an undetected balance. To the extent that the 
wavefront propagation directions of the two images have changed, interference fringes form 

that are observed superimposed on the image of the balance. The wavefronts will interfere 
destructively at points where the distance of deflection is an odd multiple of half the light 

wavelength, and constructively where the distance is an even multiple of half the wavelength. 
Each successive fringe represents the deflection of an additional wavelength. A raw data 
record of such measurements takes the form of a photograph as illustrated in Fig. A-l ,  

where the force-moment balance is illustrated under a nominal 30-1b load (directed into the 
page) along with the optical fringes. 

To obtain the deflection data the balance was rigidly mounted horizontally on an optical 
isolation table by the end which is normally attached to the sting. A load was applied to the 
free end of the balance horizontal to the table and in a direction normal to the balance axis, 

as illustrated in Fig. A-2. The balance was viewed and data images recorded from the side of 
the balance opposite to that of the load application, i.e., the free end of  the balance 
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deflected away from the imaging plane. The balance was illuminated with a He-Ne laser 
providing a coherent light source with a wavelength of 0.6328/an. A diagram of the optical 
set-up is shown in Fig. A-2. 

The deflection curves illustrated by the balance while under a nominal 30-1b load are 
illustrated in Fig. A-3. The deflection curve of the yaw plane shown in Fig. A-3a was 

obtained from the raw data photograph shown in Fig. A-1. The difference between the 
deflection mode of the forward station (force gage) and the aft station should be noted. The 

yaw plane of  the forward station is gaged for force measurement and is, therefore, designed 
for primary compliance in translation, whereas the aft station is gaged for moment 
measurement and undergoes a primarily rotational deflection. The deflection curve (Fig. 
A-3a) shows this station indeed to be undergoing a translational deflection much larger than 
the translational deflections of the other stations. 

Besides providing a verification of the primary deflection modes of the balance, the 

balance deflection measurements used in conjunction with the known loads applied to each 
of the balance's flexible stations provided data for obtaining spring constants of each 

From the series of three different loads hung in each balance plane, both the translational 

and the rotational spring constants of each of the three flexible stations of the force-moment 
balance were calculated. The resulting constants are tabulated in Table A-1. The 
translational spring constants of the aft yaw station and the forward pitch station were 
impossible to calculate because of the discontinuity in the model surface at these points, as 
illustrated for the aft yaw station in Fig. A-1. However, knowledge of these constants is only 
academic since these are not the primary degrees of freedom of their respective stations. 

The measurements discussed above and the resulting constants tabulated in Table A-I 

were obtained during a feasibility study of this proposed calibration technique. The data 

obtained do not reflect the kind of precision required from a pretest calibration to be used 
for actual wind tunnel data reduction. The study did lead to some conclusions regarding 
some possible improvements that could be made to enable a more accurate calibration. The 
conclusions are listed below along with some discussion: 

. A calibration body should be used which allows the application of a broad range of  
applied moments about each gage while keeping the shear force constant, or vice 
versa. 
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. Rather than displaying the fringes on the balance itself to get angular deflections, 
long fringe imaging planes should be attached to the balance sections on either side 

of the element to be calibrated. This would enable a higher fringe count over a 

known distance, reducing the uncertainty in the angle of rotation. This would 
necessitate the calibration of one element at a time. 

. For calibration of the force (translational) gages or springs, the beam which is 
undergoing " S "  bending and on which the fringes must be displayed and counted 
should be viewed and illuminated perpendicular to the center of the beam such that 
shadows do not hamper the accurate fringe count on the beam. 

4. A large number of points should be taken on each spring, enabling a better 
definition of the uncertainty of the resulting spring constant. 

5. Each spring should be calibrated in both directions of load application. 

. The use of a dual beam interferometry technique should be attempted to obtain a 
more accurate measurement of the translation across a force gage. This technique 

would use a laser beam reflected from each side of the translational gage using two 
retroreflectors secured to the balance surface. If the distance between the parallel 
beams, the angular deflection from a previous angular calibration, and the phase 
shift between the two light beams are known, the translational deflection could be 

determined. 
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Figure A-3.  Deflections of the force-moment balance. 
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Table A-1. Force-Moment Balance Spring Constants Determined 
From Interferometer Measurements 

Aft 
Gage 
Station 

Balance Six) 
Section 

Roll 
Gage 
Station 
Balance 
Section Four/  

Forward 
Gage 
Station 
Balance 
Section TwoJ 

NOTES: (1) 

(2) 

(3) 

(4) 

Pitch Pitch Yaw Yaw 
Translation Rotation Translation Rotation 

(lb/in.) (in.-lb/deg) 0b/ in . )  . (in.-lb/deg) 

425,000* Note 2 Note 3 2,910" 
(:1: 14%) (:1:7%) 

711,000 49,400 556,000 Note 2 
(+32%) (+6%) (+11%) 

Note 3 7,110" 59,300* 17,300 
(+6%) (__ 8%) (±6%) 

The spring constants quoted represent the average of three 
measurements. The uncertainty band centered about this average 
which would include all three values is indicated below each average 
spring constant. 

These spring constants were negative. Because of the unlikely event 
that a negative deflection could result from a positive load, these 
spring constants were considered to be in error. It is likely that this 
error resulted from the inability to measure this deflection 
accurately because of the short balance surface available for viewing 
fringes. 

The interferometry method used did not provide a means for 
measurement of this deflection. 

The spring constants for the degrees of freedom for which the 
balance is gaged are denoted with an asterisk (*). 
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APPENDIX B 
DETAILS OF BALANCE EQUATION OF M()TION DERIVATIONS 

The details of the derivations of the equations of  motion for each of the two AEDC dual- 
balance, cross-coupling systems are given on the following pages. The equations were 

formulated with the Lagrange approach. The moment balance system required only one 
0 derivation for both the pitch and yaw plane since all gages on this balance are moment gages 

and the side and pitch planes can be modeled identically. On the other hand the force- 

moment balance required a different model for each of the two planes of motion since one 
force and one moment gage are used in each plane, and the force gage is forward in the yaw 
plane and aft in the pitch plane. This different relative orientation of  the force and moment 

gages in the two planes results in a different model and a somewhat different derivation for 
each plane. 

The three pitch and yaw derivations presented represent the most complex cases that 
would be experienced by the balances, i.e., the balance roll section is modeled as an 
additional rotational degee of freedom, the sting motion attributable to bending is included, 
and the primary forcing motion of the C.F. balance is included to simulate in-plane motion. 
The simpler cases which may be of interest, such as the case of two degree-of-freedom, out- 

of-plane motion without sting motion, can be obtained from these derivations by setting the 
variables and related constants equal to zero which do not apply to the simpler system. For 

example, if a system is to be considered which has a completely rigid roll section, then the 0 2 
variable can be set equal to zero. The two sets of mass and moment of inertia constants 

included between gaged stations l and. 3 must also be combined into one mass and one 
moment of inertia. Although it would be possible to present a derivation for any type of 
simpler system which could be made from the more complex system, an identical result 
could be much more easily obtained by simply cancelling terms in the equations of the more 
complex system. 

The equations of motion were derived from Lagrange's equations, as illustrated below. 

/ \  
d 

, - .  a q j  .a j - ( B - l )  

Lagrange's formulation requires the definition of the dissipation function D, the generalized 
forces Qij, and the Langrangian L, which is a function of kinetic energy (T) and potential 
energy (V). 

Four separate derivations are presented in the pages that follow. Since each derivation 
was formulated with a specific model in mind, each one.is begun with a diagram of the 
dynamic model to which it applies. Following a sketch of the dynamic model, each 
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derivation includes the following steps: (1) definition of the center of gravity translations 
and translational velocities from which kinetic energy is calculated, (2) definition of the 
potential and kinetic energies, (3) definition of the dissipation function from the velocities 
and damping constants, and (4) definition of the generalized forces which apply to the 
various generalized coordinates. Following these definitions, the quantities are 
differentiated and substituted into the general formula for Lagrange's equations given 
earlier to yield the equations of motion. % 

The derivation of the roll equation of motion applies to either balance since they are 
modeled identically. The roll derivation was somewhat simpler since the masses between the 
springs were neglected. This was thought to be a good assumption since the spectral analyses 
of the roll gage signals from both balances exhibited a single predominant frequency, 
indicating a relative absence of multiple modes. The final roll equation has been written in a 
form involving the rolling moment gage reading (in moment units rather than displacement 
units) and the natural frequency of the total dual-balance/sting system. 

Derivation 1. The Moment Balance Equation Derivation 

Bala ~ e - - - ~ ' ; ~ ~  
Front I iB 

e I m M 

~-e.B.-. 

+ x ~  
(See note 1) 

I" il COS CGaero kGaer O 
Ba,ance 

m3 Rear 

.__ ~o __~ i 1 

/'2 

-I 
e 3 

c 3 

F z 

- I  

Notes: (1) The constants JB, ~0, ~C1, JC2, eC3, ~2, and ~3are measured positive (+)forward from the 
forward gage center. 

(2) F z and My are the aerodynamic force and moment applied at some location (x) on the model surface. 
(3) For in-plane motion the terms involvin9 the aerodynamic damping spring constants should be 

omitted from the above illustration and from the derivation since thej are the loads IF z and My) 
being measured. 

(4) For out-d-plane motion G O - O. 
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C.G. Translations 

+ Oo + os) 

+ Oo + os) - (ec2 - 0 ( 0 ,  + Oo + 0,, + 02) 

- 0 ( 0 ,  + Oo + 0,, + 02) 

Zcl = z, + eo(Oo + 03 - ec,(ol 

Zc2 = z~ + eo(Oo + o~) - ~(o, 

zc3 = z, + eo(Oo + 0,3 - ~(o~ + Oo + Os) - (t'3 

- (ec3 - .9 (0 ,  + Oo + o, + 02 + o3) 

ZB = z,~ - (e~ - 0 ( O o  + o,) 
I 

C.G. Translational Velocities: 

63 = g - (eB - O ( 6 o  + 6s) 

~ 1  = g + eo(6o + 6,) - ec1(6, + 6o + O 

~c2 = g + eo(6o + O - e2(6, + #o + O - (ec2 - e2)(61 + 6o + #, + 62) 

~ ,  = g + eo(6o + O - e2(61 + 6o + O - (e, - e2)(6, + 6o + 6s + 62) 

- ( e ~ 2 -  e~)(~, + 6o + t/~ + 6, + 0 

Kinetic Energy: 

T = ~Amsi I + ~AIs6 l + IAIB( ¢ + 6s) 2 + V211(61 + 60 + 0 2 

+ ~I2(61 + ¢ + 0s + 62) 2 + IAI3(01 + ¢ + 0s + 62 + ¢)2 

+ '~mB[ i  + e~(6o + O ]  ~ + '~m,Iz~ + ~(6o + O 

- e~,(6, + 60 + O1'- + '~m~[~  + ~(~o + O - e~(6, + 60 + O 

- (e¢,_ - 0 ( 6 ,  + 60 + 6, + 62)1~ + '~m~[2, + co(60 + 0 

- e~(6, + 60 + 6,) - (e~ - e~)(6, + 60 + 6, + 62) 

- ( e c 3 -  e,)(O! + d 0 + 6 s + 6 2 + ds)]2 
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Potential Energy: 

V = ~Akzszs z + 9~k0s0 ~ + ~Akl0~ + ~k20 ~ + ~k30 ] 

+ tAk0aero(02 + 0 2 + 01 + 0 0 + 0s) 2 + ~kzaero 

[z, + eo(Oo + o~) - e~(o, + Oo + o0 - (e~ - e~) 

(o~ + Oo + o~ + o2) - (ec2 - e3)(o~ + Oo + o~ + 02 + 03)] 2 

Dissipation Function: 

D = ½Czsi2 + ½cos02 + ~ c , ~  2 + ~c20~2 + ½c3~ 2 + ½%ae.o(~ 3 + 02 + O, 

+ O0 + Os) 2 + ~%a~o [z. + eo(g + 0.) - e2(J , + g + j .)  - ( f , _  e2) 

( 4  + g + 6, + ~=)1 

% ): Generalized Forces (Qi = ~j aqi 

• ~ = Fz x~ = z = f(0~, 02, 03, z,, 0o, 0~) 

z = z s + to(O o + Os) -  e2(0 , + 0 o +  0 , ) -  (t  3 -  ~) (0 ,  + 0 o +  0 s 

+ o2) - (x - O ( o ,  + Oo + Os + o~ + o3) 

~3 = My x 2 = 0 

0 = 0  o +  0 , + 0 ~  + 0 2 +  03 

Qi = Fz + My 

• "QI  - the moment causing the deflection 01 = M 1 

Q3 zK oo 2 / + My 

• ".Q2 - the moment causing the deflection 02 - M 3 

Lagrange's equation for 01, the forward moment gage deflection: 

d ,(8......_:___') 0L + 8_._.._~D = M l 
dt ~ o o 1 "  ao~ oi l 
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I,(0"l + 0"o + 0"~) + 12(0"1 + 0"o + K + 0"2) + I3(0"! + 0"o + K + 0"2 + 0"~) 

+ ml[z's + ?0(0"0 + O's) - fCl(0"l + 0"0 + 0"v) ] [ -  tCl] 

+ m2tz's + fo(0"o + 0"s) - f2( ~', + 0"o + 0"s) - ( /c2 - 6 )  

(~', + ~'o + ~'s + ~ '2)1[ -  ec~l + m # ' .  + e#'o + ~'J 

- e~(~'~ + ~'o + ~'J - (e~ - 0 (~ ' ,  + ~o + ~ + ~',3 - ( e c , -  e~) 

(0"1 + 0"0 + 0"s + 0"2 + 0"20][- tO3] + klO, + koaero(03 + 02 

+ 0, + 0o + o.) + c # ,  + cO.°ro(63 + 62 + #~ + 6o + 6,) = M ,  

Note: kzaer ° and czaer ° have been assumed to be negligible in arriving at the above 
equation. 

[I 1 + 12 + 13 + mlf~z + m2e~2 + m3#c310"1 + [I 2 + 13 + m2t¢2( /c2-  ~)  

+ m3ec3(ec3- ez)lb'2 + [13 + m3ec3(ec3-  es)]b'3 + [ -  eclmi - ec2m2 

- ec3m3]z's + [I! + I2 + I3 + mlec~(ec~ - ~0) + m2ec2(/c2 - Co) + m3ec3 

(£c3 - ~O)]O's + [I, + 12 + 13 + m,ec,(ec, - eJ + m2ec2(ec2- Co) 

+ m3ec3(ec3 - eo)]0"o + k,0, + ko..~o(03 + 02 + 0, + 0o + 0~) 

+ c ,~  + co.~o(# 3 ~2 + ~, + #o + ~ )  -- M, 

Assume that the balance a~d sting deflections are sinusoidal, e.g., 

0j = Oje i°t and z s = Zse i°t. 

Al(  - 002Oi) + B,( - 0J202) + Cl( - o0203) + DI( - ~2Os) + El(  - oJ2Zs) 

+ FI( - °J200) + klOl + koaero(O3 + O2 + OI + O0 + Os) + Cl°JiO1 

+ c,.°.o(63 + 62  + ~ ,  + Oo + o~) ffi gt, 

The constants A ! through F l are defined in the preceding equation and are tabulated in 
Table 5. 

Lagrange's Equation for 0 3, the aft moment gage deflection: 

d (  aL ) 0L + ~D 
¥ - - ~ { J  - o0-7 o~, - M, 
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I3(0"3 + 0"2 + 0"| + 0"o + 0 + m3[z's + eo)O"o + O s) - ~2(0"1 "{" 0"0 "4" O's) 

(e, - ~ ) 0 2  + ~, + ~o + 0 - (ee, - e3)O, + ~2 + ~, + ~0 + O ]  

[ -  (e¢3 - e3)] + k~03 - ko.=o(O ~ + 02 + O, + eo + eJ  + c~d~ 

={= COa=o(d 3 =I = d 2 4 = d I =F d O =1= d J  = M 3 

Note :  kzaer ° and Czaer ° have been assumed to be neglible in arriving at the above equation. 

[I3 + m3tc3(fc3 - t3)]0"! + [I3 + m3(tc3 - f 2 ) ( t c3 -  f3)]02 + [I3 + m3(fc3 - t3) 2] 0"3 

+ [ - m3(tc3 - f3)]~'s + [I 3 + m3(tc3 - eo)(fc3 - t3)]00 + [I 3 + m3(tc3 - to) 

(tc3 - t3)]0s + k303 + koaero(03 + 02 + 0, + 00 + 0s) + c303 + c0aero(03 + d 2 

+ d, + d 0 + d,) = M 3 

Assume that the balance and sting deflections are sinusoidal, e.g., 

0j ---- Oje i''t and z s = Zse i'°t 

A2( - °901)  + B2( - ~202)  + C2( - ~ O 3 )  + D2( - °J2Os) - E2( - °~2Zs) 

+ F 2 ( -  ~o260) + k363 + koaero(63 + 62 + 61 + 60 + 6s)  + C3¢oi63 

+ c0.=o~i(6,  + 62 + 6 ,  + 60 + 6 . )  = M3 

The constants A 2 through F 2 are defined in the preceding equation and are tabulated in 
Table 5. 
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Derivation 2. The Force-Moment Balance Pitch Plane Equation Derivation 

zs-" I cz s kz s 

Balance m ~1 - - O ~  \ \ \ \ \~ \~ '~  
Front ,B ~ ~ z ~  . ~ " ~ , _ ~  kz, 'ot /~7Saer 

~ t  - . ' - -  Jo----'[ ± 
~--  S ~ J2 ~ kzaer° T czaer°- 

/¢z -- 

fC3 + x ~  
(See Note 11 

t CBaero 
F Z 

Balance 
Rear 

Notes~ (1) The constants JB, JO, ~C1, ~C~, ~C3, and J2 are measured positive (÷) fonvard from the 
forward gage center. 

(2) F z and M v are the aerodynamic force and moment applied at some location (x) on the 
model sutlace. 

(3i For in-plane motion the terms involving the aerodynamic damping and spring constants 
should be omitted from the above illustration and from the derivation since they are 
the loads (F z and My) being measured. 

(41 For out-of-plane motion 80 • O. 

C.G. Translations: 

ZB = z , -  (tB - eo)(Oo + 0, )  

Zc~ = z, + eo(Oo + 0,)  - ec,(Oo + o, + 01) 

z¢2 = ~, + to(Oo + o,) - e2(Oo + o, + o,)  - (ec2 - t~)(o2 + 01 

+ Oo+ oJ 

zc3 = z,  + eo(Oo + o, )  - e2(Oo + oj + o,)  - (e¢3 - e2) 

(o2+o, +Oo+O, )+z  3 
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C.G. Translational Velocities: 

~-~ = ~ - (11~ - 11o)(6o + 6,) 

~:, = ~ + eo(6o + 6.,) - 11~(6o + 6, + 61) 

ZC2 = ~ + tt0(60 "t- 0s) -- 112(60 + 0s -[- 61 ) -- (eC2 _ 112)(62 Jr. 61 -I- 60 + 0s) 

~ ,  = ~ + ?o(~o + 6,) - 11~(6o + 61 + 6,) - ( e ~  - 11~)(6~ + 6! + 60 
+ 6,) + ~  

Kinetic Energy: 

T = ½ms~.s 2 + ½Isis2 + ½mn[Zs - (11B - 11o)(0o + 0s)] 2 + ½IB(60 + 6s) 2 

+ ½ m l [ ~  s + ?o(6o + 6 s) - 11c1(6o + 6 s + 6 | ) ]  2 + ~ I , ( 6  o + 6 s + 6|)  2 

+ '~m~[~,  + 11o(6o + 6,) - 11~(6o + 6, + 61) - (11~ - 11,.) 

(60 + 6, + 61 + 6~)] ~ + ,~i~[6o + 6, + 61 + 6~1 ~ + ~ m ~ [ ~  + 11o 

(60 + Os) -- ~(00 + Os + 61) -- (11C3- ~) (60  + Os ° +  OI + 62) 

+ ~ l  2 + '~13(60 + 6, + 6! + 6~) ~ 

Potential Energy: 

z~:3 + ~ko~,~o(02 + O~ + Oo + O3 2 

Dissipation Function: 

D = ,~%~2 + ~COs6~ + ,~162 + ~ 6 , ~  + ~ c , ~  + ~%oro~.~, 

+ ~ % , o ( 6 2  + 61 + 60 + 6s) ~ 

Generalized Forces (Qi = ~j oxj 
~qi ): 

• ~1 = Fz  x 1 = z -- f(01, 02, z3, z,,  0o, 0,) 

z = z, + ?o(Oo + o~) - e~(Oo + ol + o~) - (x - e2) 

(02 + 01 + Oo + o,) + z 3 
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.cJ~ 2 ---- My 

ql = 01 

X2=0 

O= 02+ 01 + 0o+ Os 

(+) (+) QI = Fz + My = F z ( -  x)  + Myt(1) 

QI = MI -== the moment causing the deflection 81 

q3 ---- Z3 

= F~" 8z '~ M ( 80 ~ = Fz(l ) + My(0) = F z 
Q3 z~ k OZ 3 ~ 4- y~ c3Z3 j 

Q3 -- Fz = the force causing the deflection z 3 

Lagrange's Equation for 01' the aft moment gage deflection: 

( ~ - - W "  ) ~'~ + ~__~ 
dt 801 ~1 

= M 1 

m,[~'s + eo(~'o + ~':) - e~,(~o + ~'~ + ~ ' , ) l [ -  e¢,l + ],[~', + ~'o + ~1 

+ m2[Z's + eo(O"o + O"s) - e2(0"1 + 0"0 + Os) - ( e c 2 -  e2)(0"2 + ~)', 

+ ~o + ~ , ) l [ -  eeJ + ~[~'~ + ~', + ~o + ~'J + m,F ,  + eo(O'o + ~',) 

- e,O', + ~'o + ~',) - ( ~  - e~)(~'~ + ~', + ~o + ~',) + ~',1[ - e~,] 

+ 13[02 + ()', + Oo + O"s] + k,O, + koaero(O 2 + O, + 00 + 0 s) + c,(~, 

+ C,aeto((~2 + 01 + 00 + es) = MI'  

Note: kzaer ° and cza=o have been assumed to be negligible in arriving at the above 
equation, 

[mle21 + I~ + m2e~2 + 12 + m3e$3 + IJ~'1 + [m2ec2(e¢2- O + I2 

+ m3fc3(fc3 - f2) + I3102 + [ - m3fc317"3 + [m,fcl(fcl  - go) + I1 + m2fc2 

( e ~ -  eo) + I, + m 3 e ~ 3 ( e ~ -  eo) + IJ~'o + [m,e~,(e~, = eo) + h + m~e~ 

(fC2 = eo) + I2 + m3ec3(ec3 - eo) + I3]t/~ + [ - m,ecl  - m2ec2 - m3fc3] z's 

4= klO 1 4" kOaero(O 2 4= 01 4- 0 0 4- Os) + c,(~, 4- COaero(O 2 4- OI 4- (~0 ")" ~ -- M,  

63 



AEDC-TR~I~4 

Assume that the balance and sting deflections are sinusoidal, e.g., 

0j = ~jC i~t and zj -- Z j e  i'*t 

A , (  - o.)281) 4 = B I (  - o.)282) =4 = C i (  - o.)27.3) =F D I (  - ~02Os) 4 = E l (  - ¢o2Zs) 

+ FI( - ~o2Oo) + k lO , + k0aero((32 + O! + 8 0 + Os) + clod(31 

+ ce.oro~i(82 + ~ + 8o + 8 J  = fi, 
The constants A 1 through F ! are defined in the preceding equation and are tabulated in 
Table 4. 

Lagrange's  Equation for z3, the aft moment gage deflection: 

d (  0L ) ' _  0_..L_.L + 01) = F z 

dr 8i 3 #z 3 # i  3 

m31i"• + eo(00 + ~)'s) -- ~(0", + 0"0 + 0"s) - (ec3 - e2)(0"2 + ~)', + 0"0 + ~)'s) 

+ Z'3] + k3z3 + kzaeroZc3 + c 3 ~  + Czaero~:~3 = F z 

[ - m3?c3]~'l+ [ - m3(fc3 - f2)]b" 2 + [m3(e 0 - ec3)]~" 0 + [m3(e 0 - ?c3)]~'s 

+ [m3]~'s+ [m3]~" 3 + k3z 3 + C3~' 3 = F z 

Note: kzaer ° and Czaer ° have been assumed to be neglible in arriving at the above 
equation. 

Assume that the balance and sting deflections are sinusoidal, e.g., 

0j -- (~je i~t and Zj = Z j e  i~t. 

A2( - ~ 8 , )  + B2( - ~28~) + C2( - ~ Z 3 )  + D2( - ~ O , )  + E2( - ~Z,) 
+ F~( - ~O0)  + k~3 + c~i£'~ = Fz 

The constants A 2 through F 2 are defined in the preceding equation and are tabulated in 
Table 4. 
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Derivation 3. The Force-Moment Balance Yaw Plane Equation Derivation 

+X , , ~ - -  

{See Note 1) 

koJ s 
c~ s 

,°-I 
£C3 

£C2 

Notes: 

=- X I-" 
(1| The constants P'B' £0, £C1, JIC2, £C3, ~2, and JI3are measured positive (+) 

forward from the forward gage center. 
(2) Fy and M z are the aerodynamic force and moment applied at some location ix) 

on the model surface. 
13) For in-plane motion the terms involving the aerodynamic damping and 

spring constants should be omitled from the above illustration and from 
the derivation since they are the loads (Fy and M z) being measured. 

(4) For out-of-plane motion e O- O. 

'Fy 

~" Mz 

C.G. Translations: 

yB = (e8 - eo)( o + 

YC, = Ys + fo(~o + ~s) + Yz 

YC2 -- Ys + eo(~o + ~s) + Yl - e2(~o + ~s) - (fc2 - P2)(~2 + ~0 + ~s) 

yc3 = ys + (to - f2)(~o + ~s) + y l - (e3 - f2) 

( ~ 2  + ~0  + ~/s )  - ( e c 3  - P 3 ) ( ~ 3  + ~2 + ~0  + ~ s )  

65 



A E DC-TR-81-34 

C.G.  Translat ional  Velocities: 

~B = ~s - (eB - eo)(do + ¢s) 

~c,  = ~,, + eo(do + ',h) + ~, 

~,:::.,. = ~,, + (eo - e.,.)(,/,o + d,,) + :/, - (e,:::., - ~ ) ( d ,  + do + d,) 

~c:, = ~., + ( e o -  e,.)(do + d,,) + ~;, - (e, - e.,)(d, + do + d,,) 

- (e,:::~ - ~ ) ( d 3  + d2 + do + d, , )  

Kinetic Energy: 

T = ' ~ m , ~  + ~ d ~  + ~ m ~ [ ~  - (e~ - ~)(¢o + ~ j ] 2  + ~ I d ~ o  + d$) ~ 

+ ~mt[);s + eo(do + ds) + 3;,] 2 + ~ I i [ ~  0 + ~s] 2 

+ IAm213~s + 3rl + (Co- 'cz)do + (Co - ecgds - (re2 - egd21 ~' 

+ ~AI2[¢2 + do + ds]:' + ~Am3[~;s + y,  + (e 0 - ' c a ) d o  + (eo - ec3)ds 

- (ec3 - e2)d2 - (fc3 - e3)d3] 2 + ½13[d 3 + d2 + do + ds] 2 

Potential Energy: 

v = '~k~y~ + ~k~.,¢~ + ~k~y~ + ~ k 2 ~  + '~k3¢~ + ~ k y ~  o 

Y~ + ~k~,,~o(~2 + ~ + ¢0 + ~)2 

Dissipation Function: 

D = ½eys);S 2 + ½eq, sd ~ + ½c]~;~ + ~Ac~_d~ + ½ e ~ ¢ ]  + ½Cyaero~3 

+ ~%,,o(d~ + d| + ¢o + ds) ~ 

Generalized Forces (Qi = ~j i)xj 
Oq i '): 

~1 ---- Fy XI = Y = f(Y~, ~2' ~3' Ys' ~s' ~0) = f(q], q2' q 3 ' ' "  ") 

Y = Ys + (fO - ~2)(~0 + ~'s) -Yl- (e3 - @ 

(#', + ~o + ~ )  - ( x  - e~)(~,3 + ~2  + #'o + 'd,~) 
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QI -- Fy -- the force causing the deflection Yl 

q3 = ~b3 

(0-~-3) ( 8-~-3 ) F,(x f3)+ Mz(1)M 3 Q3 = Fy + M z = - - = 

Q3 = M3 -ffi the momen t  causing the deflection ~b 3 

Lagrange ' s  Equa t ion  for Yl, the aft  moment  gage deflection: 

dt 8y I 0~i 

ml[gs + eo(~;o + ~;~) + ~/i] + m2[Ys + YI '+ (to - ec2)~o + ( t o -  ec2)~s 

- (ec2 - e2)~2] + m3B;s + Y, + (to - ec3)~o + (to - ec,)~s - (ec, - e2)~ 2 

- (ec3 - e3)~3] + klYl + kyaeroYc3 + ct~' 1 + Cyaero~'C3 = Fy 

[ml + m2 + m3]~;l + [ - m2(ec2 - O - m3(ec3 - f2)]~2 + [( - m3) 
(gO3 - e3)]~3 + [mleo + m2(eo - fc2) + m3(to - fc3)]~s + [ml + m2 + ms]ys  

+ [mleo + m2(eo- ec2) + m3(e0 - ec3)] o + klYl + ClYl ,= Fy 

Note: kyaero and Cyaero have been assumed to be negligible in arriving at the above 
equation. 

Assume that the balance and sting deflections are sinusoidal, e.g., 

~j ---- ~je iwt and yj = "Yje i~t 

Al(  - ¢o2y1) + BI(  - ¢o2~2) + CI(  - ¢o2~3) + DI(  - w2~s) + El (  - ~.2ys ) 

"4- r l (  - W2~o) -F kl'Y ' + ClwiY 1 = ]~y 

The constants A~ through F~ are defined in the preceding equation and are tabulated in 
Table 4. 
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Lagrange's Equation for ~k3, the aft moment gage deflection: 

d(a_~_~3) - a.~__.L + 013 = M3 
dt 8¢3 8~/3 

m3[~" s + ~r', + (fo - fc3)~o + (go- fc3)¢s- (gc3 - ?9.)~;2 - (-ec3 - ~)~3] 

[- (fc3 - O] + 13[~;3 + ~2 + ~;0 + ~",] + k3~3 + k+,oro(~3 + ~ + ~o + ~,) 

+ c~ + %o,o(~ + ~'~ + ~'0 + ~,) = M~ 

Note: kyaero and Cyaero have been assumed to be neglible in arriving at the above 
equation. 

[( - m3)(fc3 - ~3)]~/'1 "1" [I 3 + (m3)(fC3 -- g2)(fc3-  f3)]~2 + [I3 + (m3) 

(fc3 - f3)2]~ + [I3 - (m3)(?C3 - f3)(?o-  fc3)]¢s + [( -- m3)(?c3 - fs)]);s 

+ [I3 - (m3)(?-o - f¢3)(fc3 - f3)]¢0 + k3¢3 + kc, aero(¢3 + ~2 + ¢0 + Cs) + c3¢3 

+ C+a©ro(~ + )~ + ~0 + )~  = M3 

Assume that the balance deflections and sting deflections are sinusoidal, e.g. 

- . ~jeioot )~j = ) j e  '~t and yj = 

A2( - oo2y';) + B2( - oo2~'2) + C2( - oo2~I,~ + D2( - oo2,{~ - E2( - oo2ys) 

+ F2( - 002*0) + k3~3 + kCaero(~3 + ~2 + ~0 + ~s) + 03~°i~3 

+ CCaero~°i(~t3 + ~2 -I- ~0 + ~ J  -- M3 

The constants A 2 through F 2 are defined in the preceding equation and are tabulated in 
Table 4. 
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Derivation 4. The Roll Derivation 

AEDC-TR-81-34 

Rear View 

aero 

Balance ~ [~ ~I Rear 

13 12 I 1 If 
m3 m 2 m 1 mf 

Note: The C.G.'s of the balance sections and the model are assumed to lie on the balance 
centerline, which is the axis of rotation in roll. Therefore, there are no translations or 
translational velocities. 

Kinetic Energy: 

T = ~If~f 2 + IAIl(~b f + ~1) 2 q" ~I2(~ f + ~1 + ~2) 2 -I- ½13(~f + ~1 + ~2 + ~3) 2 

Potential Energy: 

V = tAkl~2 + tAk2~2 + ~ k 3 ~  2 + ~ k f ~  2 + ~k#~aero(~b I + ~2 + ~3 + ~f)2 

Dissipation Function: 

D = V2ct~ 2 + t~Cl~2 .4- I~c2~ -l- I~c3~)3 2 -4- l~COaero((~f -I- ~)I "{" (~)2 -'l- ~)3) 2 
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,._ 8Xj '~.  
Generalized Force Qj = .~i kli , r  

.cy 1 = M x xt = 4, = f(~1,  ~2, ~3, 4,f) 

4, ---- 4,1 -t- 4,2 -I- 4,3 -I- ~f 

ql = 4,3 

QI = Mx -- the rolling moment  which causes the roll deflections 

Lagrange's Equation for 4'2, the mid-balance roll deflection: 
o 

+ 

I2(~f + '~1 + ~2) + I3(~f + ~1 + ~2 + ~'3) + k24,2 + k~,aero(4,1.q- 4,2 + 4,3 + 4,f) 

+ c2~ 2 + C#aero(~f -I- ~i "}" ~2 -b ~3) -- Mx 

Since 12 < < 13 and kCaer ° < < k2, the terms including these parameters are neglected. 

Assume that the balance deflections are sinusoidal,  i .e.,  4,j = 4,e i,dt. 

-- w2X3(c~f + ¢~1 + ¢~2 "}" ~3) "}" k2~2 + c2wi~2 + C4,aeroWi(~f + ~>1 + ~2 

+ c2wi~ 2 [1 w213 (~ f  + ¢I' 1 -I- ~2 + "3)]k2¢~ 2 
k2~2 

+ %a~ro,0i('~f + 'I', + ~2 + ~3)  = l~x 

k2~2 
Substitution: ¢]Df -I- ¢I> 1 -b ¢I~ 2 -I- ¢I> 3 = ¢I~ToTA L -- ktotal 

• f-I- ~1 -t- ¢I~ 2 + ~3 = k2~2 ( I '~ 
IkktotalJ 

2 1 - [1-o .,( + c2°~i~2 + c~aeroui(~f + 4'1 + ~2  + ¢~3) = 

7 0  



AEDC-TR-81-34 

co 

[ I  -- (, Wnt=ta . ) 2 ]  

Substitution: 
13 1 

ktota I w 2 ntotal 

k2~2 + c2wi~2 + c,ae+oWi(~f + ~1 + ~2 + ~3) = fix 

1 

Substitution: k2~ 2 ---- M~ 

M~ --- the apparent moment measured by the 
rol l ing momen t  gage e lement  as 
determined using a static calibration 
sensitivity. 

( %--~o~! ) ] c2 ~oi~+ " -  w 2 Mx + ~ C~aeroWl~total = Mx 

M; 
Substitution: ¢I, tota t = ktotal 

2 {[,- (~) 1+ .i[~+ °+~,o~,. }a~-- i,,. 

71 



AEDC-TR-81-34 

APPENDIX C 

THE DETERMINATION OF CONSTANTS NEEDED FOR DATA REDUCTION 

Basically there are three types of constants that must be determined before the complete 
equations of balance motion can be used: (1) moment of inertia and mass constants along 
with c.g. locations, (2) spring constants, and (3) damping constants. 

The first type of constants can usually be fairly accurately determined from balance and 
model dimensions and the density of the material from which they are constructed. The 
moments of inertia of some aerodynamic models are somewhat more difficult to obtain than 
the balance inertias since the models often have irregularly shaped surfaces for which it is 
hard to calculate a volume. However, through the use of a torque tube or possibly using a 
trifiler pendulum it is possible to obtain these inertias to within less than one percent 
uncertainty. 

The second type of constant, the spring constant, is somewhat more difficult to obtain. 
To most accurately model the system, all degrees of freedom permitted by the balance/sting 
system must be included in the equations of motion, and a spring constant must be 

determined for each of the flexible elements permitting a degree of freedom. However, each 

balance is designed and gaged for particular primary degrees of freedom, and other 

extraneous degrees of freedom than those which are gaged and monitored are considered 
negligible. The confirmation of these primary degrees of freedom and the determination of 

these spring constants using holographic interferometry are discussed in detail in Appendix 
A. Besides this load versus deflection technique, it is also possible to determine the spring 
constants from knowledge of  the masses and moments of inertias, as discussed above, and 
balance mode frequencies measured with the C.C. balance mounted to a rigid support 
(inertial reference frame). 

As an example, a solution is given below for the spring constants of a 2-DOF moment 

balance on which a known mass is mounted and for which the masses of the "floating" 
balance sections are known. This is a model that could be used for the moment balance if the 

central roll gage element is considered rigid in pitch. A simplified sketch of the system is 
given below. 

, I  

f 

I_ ~3 _1 

72 



• The characteristic equation for such a 2-DOF system is 

o r  
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X4(mllm22 + 'm22) - X2(k3m,l + klm22) + k,k 3 = 0 

X4(a) - X2(b) + c = 0 

where a, b, and c are equation constants to be determined, and where the mass terms m n,  

m12, and m22 are defined below. 

mll  = I I + mile1 + 13 + m3~c3 

m22 = 13 + m3(f 3 + eC3) 2 

m12 = m21 = 13 + m3ec3(f3 + fC3) 

If the balance is mounted to a rigid support, the mode  frequencies of  such a 2-DOF 

system are fairly easy to distinguish when a spectral analyzer is used to display the frequency 

content  of  the freely oscillating balance. Defining these frequencies as 

k I - frequency o f  1st mode 

X 2 -- frequency o f  2nd mode 

they can be used in the above characteristic equation to yield two equations in two 

unknowns. 

axe- bX~ + c = 0 

a x e -  b)~] + c = 0 

These two equations can be solved for b / a  and c/a .  

From the identities 

b/a  = 
k3mll + klm22 
milm22 + m22 and c / a  = 

klk3 
2 

mllm22 + m12 

and the known mass constants, m~ ,  m12, and m22, the spring constants k] and k 3 can be 

determined. 
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Aside from the mechanical spring constants themselves, the free-stream flow over the 
model surface also provides a restoring moment which can be thought of as a spring 
constant. This constant, k0aer ° or keaero, must be obtained from previous static stability tests 
or dynamic stability, direct derivative tests. While they are included in the initial steps of the 
derivations in Appendix B, they have been neglected in the final equations since they are 
relatively small compared to the balance spring constants. In most cases they would 
represent much less than one percent of the total spring constant. 

The third type of constant, the damping constant, can be divided into two categories: (l) 

the aerodynamic damping constants such as c0aer ° and %aero' and (2) the mechanical 
damping constants of  the balance gage elements. As with the aerodynamic spring constants 
the aerodynamic damping constants must be known from previous dynamic stability, direct 
derivative tests. Unlike the aerodynamic spring constants, the aerodynamic damping 
constants cannot be neglected in the equations of motion. They could be of the same 
magnitude or larger than the mechanical damping constants. An example showing the 
effects of neglecting the aerodynamic damping constants on a typical test is given in 
Appendix D. 

The mechanical damping constants can be determined in the laboratory before a test 
using a similar procedure to that used to obtain C.F. balance mechanical damping constants. 
When the dual balance system with an attached model or calibration body is oscillated in a 
vacuum, the aerodynamic force and aerodynamic damping terms drop out. By using a cali- 
bration body with known cross products of inertia, a known load can be applied to the 
balance. This load will have a real component only, i.e., it will have zero phase with respect 
to the impressed balance motion, since it is strictly an inertial load. Using the equation of 
motion for the moment balance as an example, the complete equation of motion, 

- ~2(A,6, + B,6  2 + C,O 3 + D]O s + E,Z" s + FRO0) + k,O 1 + cffoiO, 

+ + + 6, + & + 60) = 

takes the form 

cl~i61 = ~2(Ai6, + B162 + CiO3 + Di6s + EiZs + F100) - kl61 + MI 

o r  

o, _--=-- - - ¥, °o cl i = wA 1 + Br O2 + wC 1 03 + wD 1 _es + o~El...._=..._ + wFr=  
el el el el el 

k, M1 } 
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Therefore, c I is equal to the imaginary part of the bracketed term, and the real part should 
be equal to zero. In a similar manner any of the balance equations of motion can be.solved 

for the mechanical damping constants if the system is oscillated under vacuum. 

The roll equation of motion poses a somewhat different problem. In this particular 

equation [Eq. (2) of Table 3], the constant c2/k 2 is required. A simple approach to obtaining 
this combined constant can be used if the total system damping is known, similar to the case 

described by Buchanan in Ref. 4. 

For a single-degree-of-freedom roll system, the equation of motion takes the form 

I2~" 2 + C2~ 2 + k202 = M 

or 

-- W212~2 + c2wi¢~ 2 + k2~ 2 -- M" 

where the displacement #'2 takes the form ~2 = ~'-2 ei'°t and the resulting moment is assumed 
to take the form Mei¢t. For a two-degree-of-freedom roll system, where the two degrees of 

freedom are considered to be the rolling motion of the roll gage of the C.C. balance and the 
roiling motion of the C.F. balance, the equation takes the form 

I2(~2 + ~f) + c2~ 2 + k2~ 2 = M 

or 

- w212(~ 2 + ~'f) + c2wi4' 2 + k2~' 2 = 

In this particular equation 12 is the total inertia supported by the series of two springs, k 2 and 

kf as shown below. 

The primary difference between the equations of the two different systems is that the 
deflection in the inertia term of the 2-DOF system includes the deflection of both springs. 
For a general static moment M, this total deflection can be rewritten as follows. 

M - M  + = # 2  1 +  
~total -- ktotal 
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where 

M = k2~ 2 = kf~f 

The 2-DOF equation now takes the form 

k 2 - 
- co212(1 + ---~-f )@2 + C2coi~2 + k2~ 2 = IV[ 

If the term (1 + k2/kf)I 2 is looked upon as an effective mass, then this equation takes the 
same form as the I-DOF equation, which can be written in the form 

\ 

$'2 + 2~'con~2 + w2~2 = COn 2 M ei~t + "~ 
k2 

where 

k2 
con = i2(1 + k2/kf) 

and 

~- = C2 C2w n 

212(1 + k2/kf)~ n 2k 2 

The solution for this system results in the definition of  3' and k2~2/M as follows: 

3" --~ tan-I 
2~'~ 

~n 
w 2 

1 - (--~-n) 

k24~2 1 
n 

M ~ ( 1  C°n°~ )2)2 + 4~.2(_~_n )2 

By experimentally determining 3' and k2~2/M, commonly referred to as magnification 
factor/z, for several values of  co/con, the value of  ~" and co n can be determined through a 
curve-fitting process as was done by Buchanan (Ref. 4). Knowing ~-, the value of  c 2 can be 
determined if k 2 and kf are known, which requires another laboratory procedure. However, 

this can be avoided because only the ratio c2/k 2 is required in the roll. equation of  motion. 
From the definition of  [', the term c2/k 2 can be defined as 
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c 2 2~- 

k2 ~n 

where ~n is the natural frequency of the total system in roll. Although for this 2-DOF system 
there would be two mode frequencies, the mass between the two springs is relatively small. 
For practical purposes the system behaves like a I-DOF system with the primary mode 
frequency showing up as the above-mentioned single natural frequency. This has been 
confirmed by experiment. 
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APPENDIX D 
THE EFFECT OF NEGLECTING THE AERODYNAMIC DAMPING CONSTANT 

FROM THE DATA REDUCTION PROCEDURE 

As discussed in Sec. 3.0 and Appendix B, the complete equations of motion require both 
mechanical damping constants and aerodynamic damping constants. In some cases the 
aerodynamic damping constants may not be available, and it becomes a question of how 
accurate the dynamic moment can be if the aerodynamic damping is neglected. There is no 
general answer to this question because the aerodynamic moment depends on so many other 
parameters besides aerodynamic damping. To illustrate this point the roll equation of 
motion will be used with some typical input constants from a previous test run with a dual- 
balance system. When all of the constants in the roll equation of motion are input it 
simpfifies from 

{ [ ,  - 
kto~l 

to 

The vector constant by which the measured moment is multiplied serves to demagnify and 
phase shift the measured moment M-"~ to yield the aerodynamic load Mx. The 
demagnification constant 1/~ would normally not show a significant effect from ignoring 
c~aer ° since C~aero/ktota I is much less than one in most cases. The effect on phase shift (~7) 
would normally be more significant since A 7 varies directly with the imaginary part 
(damping term) for small angles. Therefore, in terms of the final result Mx, the primary error 
resulting from ignoring C~aer ° would be in the form of a phase error. 

Using the mechanical characteristics of the 4,000-1b dual balance roll derivative system 
used for the roll tests described in Ref. 4, 1/~ and ~7 are plotted in Fig. D-I versus 
aerodynamic damping for several values of balance system natural frequency in roll, which 
was varied by changing roll moment of inertia I x. As mentioned above, the phase shift ~7 is 
affected significantly while the demagnification constant sees little change. In Fig. D-2 this 
phase angle shift is shown in terms of percent error in phase angle for several values of 
neglected aerodynamic damping constants. As would be expected, the errors get very large 
for small values of phase angle. 
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Considering that aerodynamic cross or cross-coupling moments will have small phase 
angles, and considering the errors which could result if all of the damping constants are not 
well defined, the future of these measurements might be considered bleak at best. However, 
below a certain threshold level of cross or cross-coupling damping, these derivatives will be 
of little concern to the aircraft stability anyway, and can be ignored. The high uncertainty in 
damping measurements is unimportant. In fact, it might be more correct to quote cross and 
cross-coupling moments in their vector form with an absolute uncertainty in phase angle 
rather that to divide the moment into its in-phase and out-of-phase (with position) 

components. 
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NOMENCLATURE 

Real part of a complex number 

Imaginary part of a complex number 

Damping coefficient, ft-lb-sec/rad or lb-sec/ft 

Wing mean aerodynamic chord, ft 

The damping force or moment attributable to the jth component ft-lb-sec/rad or 
lb-sec/ft 

Rolling moment coefficient 

8Ct/8(qc/2vo,), rad "l 

Slope of C t versus a curve, OC t /0a ,  rad -i 

0C e/O(~c/2Vo.), rad -1 

Center of rotation 

Translational aerodynamic damping coefficient in the yaw plane, lb-sec/ft 

Translational sting damping coefficient in the yaw plane, lb-sec/ft 

Translational aerodynamic damping coefficient in the pitch plane, lb-sec/ft 

Translational sting damping coefficient in the pitch plane, lb-sec/ft 

Rotational aerodynamic damping coefficient in pitch, ft-lb-sec 

Rotational sting damping coefficient in pitch, ft-lb-sec 

Rotational aerodynamic damping coefficient in roll, ft-lb-sec 

Rotational aerodynamic damping coefficient in yaw, ft-lb-sec 

Rotational sting damping coefficient in yaw, ft-lb-sec 

Energy dissipation function, ft-lb/sec 

Voltage 

Force, lb 

Oscillation frequencY, of C.F. balance, Hz 
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Fj 

fn 

Fy 

Fz 

Fo 

Fo 

i 

Ij 

I X 

Ixy 

kf 

kj 

ktotal 

kyaero 

ky s 

kzacro 

kz s 

koaer o 

Load applied to a balance in one of the six degrees of freedom, i.e., a force in the 
direction of or a moment about one of the three Cartesian coordinate axes, lb or 
ft=lb 

Force vector measured by the jth component, Fj -- Fjei'lj 

Magnitude of the force vector of the jth component, lb 

Natural frequency, Hz 

Force parallel to the balance y axis, lb 

Force parallel to the balance z axis, lb 

/ . • 

Force proportional to angular posttion i.e., the component of the force vector 
which is in phase with the oscillatory deflection vector OT,ib 

Force proportional to angular velocity, i.e., the component of  the force vector 
which is 90-deg out-of=phase with the oscillatory deflection vector OT, lb 

~ 1  (when not used as a dummy subscript) 

Mass moment of inertia supported by the jth component (see Figs. 3 through 6 
and Figs. 8 through 10), slug f12 

Mass moment of inertia about the x axis, slug ft 2 

Cross product of inertia relative to the xy plane, slug ft 2 

Spring constant of a pitch/yaw cross flexure balance in roll, ft-lb/rad 

Spring constant of the jth component, lb/ft or ft-lb/rad 

Resultant spring constant of a system having two or more springs in series, lb/ft 
or ft-lb/rad 

Translational aerodynamic spring constant in the yaw plane, ib/ft (assumed to be 
zero) 

Translational spring constant of the sting in the yaw plane, lb/ft 

Translational aerodynamic spring constant in the pitch plane, lb/ft (assumed to be 
zero) 

Translational spring constant of the sting in the pitch plane, lb/ft 

Rotational aerodynamic spring in the pitch plane, ft-lb/rad 
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Mx 

Mx 
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Mz 

Mo 
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q 
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Rotational spring constant of the sting in the pitch plane, ft-lb/rad 

Rotational aerodynamic spring constant in roll, ft-lb/rad 

Rotational aerodynamic spring constant in the yaw plane, ft-lb/rad 

Rotational spring constant of the sting in the yaw plane, ft-lb/rad 

Lagrangian function, T-V, ft-lb 

The distance from the forward C.C. balance gage to the jth component, ft 

Mass, slug 

Moment, ft-lb 

Mass supported by the jth component, slug (See Figs. 3 through 6 and Figs. 8 
through 10) 

Amplitude of the vector moment about the jth component, ft-lb 

Vector moment about the jth component, ft-lb 

Moment vector about a designated model reference point, fl-lb 

Moment about the balance x axis, ft-lb 

Vector moment about balance x axis, fl-lb 

Moment in the balance pitch plane, ft-lb 

Moment in the balance yaw plane, ft-lb 

Moment proportional to angular position, i.e., the component of the moment 
vector which is in-phase with the oscillating defection vector 0 T, ft-lb 

Moment proportional to angular velocity, i.e. the component of the moment 
vector which is in-phase with the oscillatory deflection vector O'T, ft-lb 

Inertia terms appearing in the characteristic equation of a 2-degree-of-freedom 
spring - mass system, slug ft 2 

Rotational velocity in pitch, rad/sec 
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Qj 

qj 

S 

T 

t 

V 

V® 

X 

Yj 

Yj 

zj 

zj 

ot 

"vr r 

"rT M 

0j 

Oj 

Generalized force relative to the jth component, lb or ft-lb 

Generalized coordinate, ft or rad 

Gage sensitivity, volt/lb or volt/ft-lb 

Kinetic energy, ft-lb 

Time, sec 

Potential energy, ft-lb 

Free-stream velocity, ft/sec 

Distance from balance forward gage station measured along balance axis, ft (see 
sign conventions on Figs. 1 and 2) 

Translational deflection in y-axis direction of the jth component, ft (see sign 
conventions on Figs. l and 2) 

Magnitude of the translational deflection vector of the jth component in the y 
direction, ft 

Translational deflection vector of the jth component in the y direction, ft 

Translational deflection in the z-axis direction of the jth component, ft (see sign 
conventions on Figs. 1 and 2) 

Magnitude of the translational deflection vector of  the jth component in the z 
direction, ft 

Translational deflection vector of the jth component in the z direction, ft 

Angle of attack, deg or tad 

Phase of the load vector or the deflection vector of the jth component, deg or rad 

Phase of force vector relative to the total deflection vector O'T, deg or rad 

Phase of moment vector relative to the total deflection vector O'T, deg or rad 

Damping factor, ~" -- c/2m~0 n 

Pitch plane rotational deflection of the jth component, deg or tad 

Magnitude of the pitch plane rotational deflection vector of the jth component, 
deg or rad 
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Pitch plane rotational deflection vector of the jth component, deg or rad 

Total pitch plane rotational deflection of a wind tunnel model, deg or rad 

Total pitch plane rotational deflection vector of a wind tunnel model, deg or rad 

Magnification factor ,- 

Roll deflection of the jth component, deg or rad 

Magnitude of the roll deflection vector of the jth component, rad 
/ -  

Roll deflection vector of the jth component, deg or rad 

Ordinary coordinates used in the Lagrangian formulation. See Appendix B 

Yaw plane rotational deflection of the jth component, deg or rad 

Magnitude of the yaw plane rotational deflection vector of the jth component, rad 

Yaw plane rotationed deflection vector of the jth component, rad 

Oscillation frequency, rad/sec 

Natural frequency, rad/sec 

Predominant (first mode) frequency exhibited by a multispring system, rad/sec 

Quantity as measured by a balance 

Motion as input by the C.F. balance 

Balance gage element located structurally nearest the sting support 

Balance gage element located at mid-balance position and used to measure roll 
deflection 

Balance gage element structurally farthest from the sting support 
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B 

S 

f 

Cl 

C2 

C3 

That mass or moment of inertia attributed to the "nonfloating" portion of the 
C.C. balance 

Sting 

Cross flexure 

Center of gravity of the balance mass located between the forward C.C. balance 
gage element and either the roll gage element (for 3-degree-of-freedom balance) or 
the aft gage element (for 2-degree-of-freedom balance) 

Center of gravity of the balance mass located between the roll gage element and 
the aft gage element 

Center of  gravity of the balance and model mass supported by the aft balance gage 
element 
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